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Preface

This book about mechanical vibrations focuses on spacecraft structures
design and reflects my experiences gained at Dutch Space B.V., formerly
Fokker Space B.V., Fokker Space & Systems B.V. and the Space Division
of Fokker Aircraft B.V., over a period of about 30 years.

Many books about mechanical vibrations have been published, however,
in spacecraft structures design, many vibration topics are applied but can be
read in different books. I have collected in this book most of the topics
about mechanical vibrations techniques usually applied in spacecraft
structures design.

I work as a part-time associate professor at the Chair Aerospace
Structures & Computational Mechanics, Faculty of Aerospace Engineering,
Delft University of Technology, and lecture “Spacecraft Structures” in the
Master’s program. The scientific environment at the university, in
combination with my work in the aerospace industry, has amplified the
wish to write a book about mechanical vibrations with focus on spacecraft
structures design. To bring together most of the techniques of modal and
dynamic response analysis is my greatest motivation to write this book.

I would like to express my admiration for the patient attitude of my wife
Wil during the time I was preparing this book.

I would also like to acknowledge my colleagues at Dutch Space and the
Delft University of Technology in general, but in particular I would like to
thank my collegue John Tyrrell at Dutch Space, for all the discussions we
had about vibration problems within the framework of spacecraft structures
projects, and Gillian Saunders-Smits at the Delft University of Technology
for reading the English text. Also, I would like to thank Bas Franssen for
reading the sections on the Mode Acceleration Technique and Load
Transformation Matrices.

Jaap Wijker
Velserbroek 2003
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1 Introduction

1.1 Why Another Book about Mechanical
Vibrations?

Placing spacecraft (S/C) or satellites into an orbit around the Earth or in our
Solar System is done by expendable and reusable launch vehicles, ELV
(e.g. ARIANE 5, Atlas, Delta, etc.) and RLV (e.g. Shuttle) respectively. The
spacecraft is placed on top of the ELV or in the cargo-bay of the RLV.

Time responze

Acceleration (g)

4008555 706,00 ] T1.00
Time (s)

Fig. 1.1. Total acceleration measured during launch of the ACE S/C with Delta I
launcher (Courtesy Goddard Space and Flight Centre, FEMCI! pages)

The propulsion forces, the aerodynamic forces, the acoustic and shock
loads during launch of the S/C strongly interact with the low- and medium-

1. Finite Element Modelling Continuous Improvement
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frequency dynamic characteristics of the launch vehicle (L/V) and will
introduce mechanical vibrations throughout the L/V and also at the inter-
face with the spacecraft.

The propulsion forces from the stage main engines and boosters will
accelerate the L/V and will result in inertia forces. The total inertia force the
S/C will encounter during launch is the summation of steady-state and
vibrations loads and will help the engineer to dimension the S/C primary
and secondary structures. This is illustrated in Fig. 1.1.

The primary structure is the backbone of the S/C structure and is consid-
ered to be the primary load path. The total inertia loads are frequently called
the quasi static design loads when safety factors to cover uncertainties are
introduced. The design of the S/C structures against the quasi static loads,
considering minimum natural frequency considerations (stiffness), belongs
to the area of strength of materials. If minimum natural frequency require-
ments are met, the S/C may be considered as a rigid body on top of or in the
cargo-bay of the L/V.

The pure mechanical vibrations are illustrated in Fig. 1.2. The steady-
state accelerations are subtracted. These mechanical vibrations are gener-
ally categorised as follows:
¢ Sinusoidal vibrations, 5-100 Hz;

e Random vibrations, 20-2000 Hz;
e Shock loads, accelerations, 100-5000 Hz.

Tima responze
2.000
|
|
|

Acceleration (g)

|
=

*"Y30 00 200.00 vi 30000 412,00

Time (s)

-2

Fig. 1.2. Vibrations during launch of the ACE S/C with Delta II launcher
(Courtesy Goddard Space and Flight Center, FEMCI pages)

The shock loads have very short time periods (0.5 ms) in comparison to
the time cycles associated with the lowest and lower natural frequencies of
the spacecraft (10-50 Hz). Shock loads are mostly represented in the form
of a shock-response spectrum (SRS). The SRS reflects the maximum abso-
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lute acceleration of a single degree of freedom (sdof) excited at the base by
the transient acceleration representing the short-period shock. An illustra-
tion of an SRS is given in Fig. 1.3. Shock loads are caused by the separation
of stages and by the ignition and cutoff of engines. However, the separation
of the spacecraft from the L/V will introduce, in general, the most severe
shocks in the spacecraft. Firing of pyros and the latching of deployable sys-
tems, e.g. antennae, solar arrays, etc., cause shock loads in the spacecraft
internally.

Shock response spectrum
Ace spacecraft liftoff
B O i
|
— | |
=0
il 5.0 T
g | | |
o =L — pla- - 7
5 T
2 ! |
] Al \
< i \[
—1—f ———
| e f—\\.-"’\_\/h! et S
r ‘ |
""P'\'.l;.‘ - ] &ul LT
Time (s)

Fig. 1.3. Shock-response spectrum (SRS). (Courtesy Goddard Space and Flight
Center, FEMCI pages)

In addition to the mechanical vibrations the outside of the spacecraft is
also exposed to acoustic pressure (20-10000 Hz). Lightweight large-area
structures, e.g. solar arrays, antenna dishes, are sensitive to acoustic loads.
An illustration of the acoustic pressures is given Fig. 1.4. The acoustic pres-

sure p has a random nature and is mostly denoted in sound pressure levels

, specitied 1in with a reference pressure p, = 2x10 a. The
(SPL), specified in dB with fi p ref ~ Pa. The SPL

is defined as
2
SPL = IOIOg(pij. (1.1)
ref.

Acoustic excitation of the spacecraft causes mechanical vibrations of a ran-
dom nature on top of the random mechanical vibrations enforced via the I/F
spacecraft with the L/V.

Summarising, the spacecraft will encounter severe vibrations during
launch and later less severe vibrations when the spacecraft is placed in orbit
and the deployable appendices are released and latched.
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Time response
Main engine ignition-liftoff

Sound pressure

Time (s)

Fig. 1.4. Acoustic pressures (Pa). (Courtesy Goddard Space and Flight Center,
FEMCI pages)

Structural engineers designing and analysing spacecraft structures, solar
arrays, antennae, instruments, equipment, etc., have to investigate the struc-
tural responses (e.g. accelerations, forces, stress) of the spacecraft and its
components to mechanical vibrations and acoustic loads. The exposure to
mechanical vibration and acoustic loads is illustrated in Fig. 1.5.

The calculation of dynamic responses in the spacecraft, the primary
structure, the secondary structures, the instruments, the equipment, etc., is
called the dynamic analysis.

Besides the dynamic responses the modal properties of the complete
spacecraft and subsystems, e.g. natural frequencies, mode shapes, effective
masses, are of great interest. The modal and dynamic response analyses are
mostly done using finite element methods [Cook 89, Petyt 90].

All typical and special modal and response analysis methods, applied
within the frame of the design of spacecraft structures, are described in this
book. To bring together most of the techniques of modal and dynamic
response analysis is the greatest motivation to write this book.

The mechanical vibration topics discussed with focus on the design of
spacecraft structures are:
¢ Single degree of freedom (sdof) systems
e Damping models
e Multi-degrees of freedom (mdof) systems
e Modal analysis, e.g. natural frequencies, mode shapes, modal effective

masses
e Dynamic response analysis

o _Deterministic.in frequency and time domain
e Random vibration
e Shock response spectrum
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Low-frequency acoustic loads, structural responses
Statistical energy analysis
Mode acceleration
Residual vectors
¢ Free-free dynamic systems
¢ Inertia relief
¢ Reduced dynamic models
¢ Dynamic model reduction
e Component mode synthesis
¢ Load transformation matrices

The above mentioned topics will be previewed in the next section.

QAntenne dish
_ﬁ wr

.\7’

box

—i|| _mA,
/N

Sound pressure
|
Solar array

—

Enforced accelerations (g)
sinusoidal

random

shocks

Fig. 1.5. Spacecraft exposed to mechanical and acoustic vibrations

1.2 A Short Overview of Theory

1.2.1 Single Degree of Freedom (sdof) Systems

Spacecraft are, mechanically speaking, dynamically excited via the inter-
face between the L/V and the S/C. This is more or less illustrated in
Fig. 1.6. Thus within the frame of sdof dynamic system base excitation
(e:gwenforced aceceleration)isof great;importance!
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An sdof system with a discrete mass m , a damper element ¢ and a spring
element k is placed on a moving base, which is accelerated with an acceler-

ation u(t). The natural frequency is given by o, = A/E (rad/s) and the
m

damping ratio by {. The resulting displacement of the mass is x(¢). We
introduce a relative motion z(r) which is the displacement of the mass with
respect to the base. The relative displacement is

z(t) = x(t) —u(t). (1.2)
"]
x(t)
k % |-I-| ¢

T u(r)
moving base

Fig. 1.6. Enforced acceleration on a damped sdof system
The equation of motion for the relative displacement z(#) becomes

3(1) +28w,2(1) + @2(r) = (7). (1.3)

with
C
2.Jkm
The enforced acceleration of the sdof system is transformed into an external
force. The absolute displacement x(z) can be calculated with

e { damping ratio, { =

i) = 20 +iu(t) = —2L0,2(0)-0z(t). (1.4)

1.2.2 Damped Vibrations

For treating mechanical vibrations, the single degree of freedom (sdof) sys-
tem is the simplest mechanical oscillator. In general a damping element
(linear or nonlinear) may be active in parallel with the linear spring. The
absolute displacement of the discrete mass is defined as x(r). Applying an
excitation force F(t) (N) on the mass m (kg), the equation of motion of
such an sdof system is [Beards 96]:
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50 + 2w ol = FO = gy (1.5)
m m

where

* o= JZ the natural circular frequency (Rad/s)
m

LI the damping force (N).

The damping force f; may be caused by:

Material damping

Air damping

Acoustic damping

Joint damping (rivets, bolts, bonding)

For linear damping, the damping is either linearly proportional to the

velocity x(t), the so-called viscous damping, or is linearly proportional to
the elastic force, kx(r), the so-called structural damping.
Hence the damping force can be defined as:

e Viscous damping f; = cx (N)
e Structural damping f; = jgkx (N).

The mentioned damping models are applied throughout of this book.

1.2.3 Multi-Degrees of Freedom (mdof) Dynamic Systems

A number of coupled linear sdof systems lead to a linear dynamic system
with more degrees of freedom, the so-called multi-degrees of freedom sys-
tem (mdof). Such a dynamic system is often called a discrete dynamic sys-
tem with n discrete masses coupled with springs and dampers.

Continuous dynamic systems may be transferred to an mdof system
using generalised coordinates [Meirovitch 70].

The application of finite element methods to continuous structures will
result in a discrete mdof system where node displacements and rotations are
the discrete unknowns [Cook 89].

In general the equations of motion of a discrete dynamic system can be
written as

[MI{x(n} +[CHx(D} + [KH{x(D} = {F(D)}, (1.6)

and consists of the following matrices and vectors:
e the mass matrix [M]



8 1 Introduction

e the stiffness matrix [K]
e the damping matrix [C]
o the force vector {F(¢)}
e the displacement, velocity and acceleration vectors {x(#)}, {x(¢)} and

{x(n}

For linear mdof systems the mass matrix, stiffness and damping matrix do
not vary in time, however, the displacement, velocity, acceleration and
force vector do usually change with time.

The equations of motion of mdof dynamic systems can be derived by
applying, amongst others, Newton’s law and Lagrange’s equations [Meiro-
vitch 70]. Both methods will be used to derive the equations of motion.

1.2.4 Modal Analysis

For structures exposed to dynamic forces the knowledge of the dynamic
characteristics of these structures is of great importance. The most impor-
tant dynamic intrinsic (modal) characteristics of linear dynamic systems
are:

e The natural frequency

e The associated mode shape

e Damping

The natural frequencies and associated mode shapes may be analysed for
both undamped and damped linear dynamic systems. The main emphasis in
this book is on undamped modal characteristics because the damping in
spacecraft structures is, in general, low.

The modal characteristics of an undamped linear dynamic system are:
The natural frequencies

The associated mode shapes

Orthogonality relations of modes (normal modes)

Effective masses

Rigid-body modes

To calculate the natural frequencies of complex dynamic linear systems,
in general, the finite element analysis method is applied. However, it is
good practice at first to apply a method to approximately calculate the natu-
ral frequency of that system to get a feel for of the value of the natural fre-
quency. The system will be simplified as much as possible in order to use
approximated methods, e.g.

e The static displacement method
¢ Rayleigh’s Quotient
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¢ Dunkerley’s Equation

1.2.5 Modal Effective Mass

The modal effective mass is a modal dynamic property of a dynamic struc-
ture associated with the modal characteristics; natural frequencies, mode
shapes, generalised masses, and participation vectors. The modal effective
mass is a measure to classify the importance of a mode shape when a struc-
ture will be accelerated via its base (enforced acceleration). A high effec-
tive mass will lead to a high reaction force at the base, while mode shapes
with low associated modal effective mass are nearly excited by the base
acceleration and will give low reaction forces at the base. The effect of
local modes is not well described with modal effective masses [Shunmu-
gavel 95]. The modal effective mass matrix is a 6x6 mass matrix. Within
this matrix the coupling between translations and rotations, for a certain
mode shape, can be traced. The summation over all modal effective masses
will result in the mass matrix as a rigid body. We define the 6x6 modal

effective mass [M,, ] as follows

(L' [L,]

[Mem,k] = m,

(1.7)
with

e [L,] the modal participation factors associated with mode shape k

e m; the generalised mass.

1.2.6  Response Analysis

This section briefly outlines the response analysis of a mdof linear dynamic
system due to dynamic forces or enforced motions. Displacements, veloci-
ties and acceleration will also be discussed. The general equations of
motion are set up and a partitioning between internal and boundary dofs has
been made in order to solve the internal dofs because boundary motions
were applied in combination with forces. When solving the equations of
motion a distinction has been made between relative motions, motions with
respect to the base, and absolute motions. Also a distinction has been made
between redundant and nonredundant boundaries. The equations are appli-
cable to solve the responses both in the time and the frequency domain.

In general, the equation of motion, in particular the internal dofs, are
solved using the-moderdisplacement method (MDM), because the full
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damping characteristics, meaning a full damping matrix, are not readily

available.

The enforced acceleration of a structure, can be treated using three differ-
ent methods:

e Relative motions: The absolute motion {x(z)} of the dynamic system is
separated into a relative motion {z(¢)} with respect to the base and the
motion at the base {x,(7)}. The absolute motion {x(z)} is the summa-
tion of the motion at the base and the relative motion
{x(6)} = {z()} + {x,(1)} . The dynamic system has fixed free boundary
conditions, either determined or nondetermined.

¢ Absolute motions: The absolute motions {x(¢)} of the dynamic system
are calculated in a direct manner as a result of forces {F(¢#)} and
enforced motion {x,(7)}. The dynamic system has fixed free boundary
conditions.

e Large-mass approach: The dynamic system is a free-free structure.
However, attached to the interface is a very large mass to introduce a

force that results in the enforced motion {x,(¢)} to calculate the abso-
lute motions {x(¢)}.

The damped equations of motion of an mdof dynamic system can be
obtained from (1.6)

[MI{x(1)} + [CH{x()} + [KI{x(1)} = {F(D)}.

1.2.7 Transient Response Analysis

Transient response analysis is the solution of a linear sdof or linear mdof
system in the time domain. For linear mdof dynamic systems, with the aid
of the modal superposition, the mdof system can be broken down into a
series of uncoupled sdof dynamic systems. For a very few cases the analyt-
ical solution of the second-order differential equation in the time domain
may be obtained and numerical methods are needed to solve the sdof and
the mdof dynamic systems. Often, the numerical solution schemes are the
time-integration methods. The time-integration methods may have fixed or
nonfixed (sliding) time increments per time integration step, and will solve
the equations numerically for every time step, taking into account the initial
values, the equation of motion, either for sdof or mdof dynamic systems.
The sdof dynamic system may be written as

X(£)+ 2L, x(1) + 0 x(1) = 1%” = f(1). (1.8)
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Implicit and explicit numerical solution schemes will be discussed, such as
the Runge—Kutta method, The Houbolt method, the Wilson-6 method, etc.

1.2.8 Random Vibrations

By random vibrations of linear dynamic systems we mean the vibration of
deterministic linear systems exposed to random (stochastic) loads.

During the launch of a spacecraft with a launch vehicle the spacecraft
will be exposed to random loads of both mechanical and acoustic nature.
The mechanical random loads are the base acceleration excitation at the
interface between the launch vehicle and the spacecraft. The random loads
are caused by several sources, i.e. the interaction between the launch-vehi-
cle structure and the engine exhaust noise, combustion. Also, turbulent
boundary layers will introduce random loads.

The theory of random vibrations of linear systems will be briefly
reviewed.

The following equation to calculate root mean square (rms) of accelera-

tion response x(¢) is very useful and is called Miles’ equation, [Miles 54].

It is mostly written as:

. T

Xrms = /EanWG(fn) > (1.9)
with

®  Xrms the rms acceleration
e 0= 2% the amplification factor
o f the natural frequency (Hz)

* W.(f,) the power spectral density (PSD) of the enforced acceleration

at the natural frequency f,

Other interesting properties of narrow-banded stationary processes will
also be discussed in this chapter:
e Number of crossings per unit of time through a certain level
¢ Fatigue damage due to random excitation

The mentioned properties are important properties for further investigation
of the strength characteristics.
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1.2.9 Shock-Response Spectrum

Separation of stages, such as the separation of the spacecraft from the last
stage of the launch vehicle will induce very short duration loads in the
internal structure of the spacecraft, the so-called shock loads. The duration
of the shock load is generally very short with respect to the duration associ-
ated with the fundamental natural frequencies of the loaded dynamic
mechanical system.

The effects of the shock loads are generally depicted in a shock response
spectrum (SRS). The SRS is essentially a plot that shows the responses of a
number of sdof systems to an excitation. The excitation is usually an accel-
eration—time history. An SRS is generated by calculating the maximum
response of an sdof system to a particular base transient excitation. Many
sdof systems tuned to a range of natural frequencies are assessed using the
same input time history. A damping value must be selected in the analysis.
A damping ratio { = 0.05, Q = 10, is commonly used. The final plot, the
SRS, looks like a frequency-domain plot. It shows the largest response
encountered for a particular sdof system anywhere within the analysed
time. Thus the SRS provides an estimate of the response of an actual prod-
uct and its various components to a given transient input (i.e. shock pulse)
[Grygier 97]. An example of an SRS is given in Fig. 1.7.

Shock Response Spectrum (SRS)

1 1 1
0 500 1000 1500 2000 2500 3000
Frequency (Hz)

Fig. 1.7. SRS of half-sine pulse (HSP)
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The response of an sdof system, due to enforced acceleration, will be
reviewed.

Furthermore the calculation of SRSs will be discussed in detail. The
maximum values occurring in time histories will be compared with the SRS
approach and finally, it will be shown how an existing SRS can be matched
(with synthesised decaying sinusoids).

1.2.10 Acoustic Loads, Structural Responses

By acoustic vibration we mean the structural responses of structures
exposed to acoustic loads or sound pressures. In this chapter we discuss the
low-frequency acoustic vibrations because the equations of motion are
solved using the modal approach, namely mode superposition. In the
higher-frequency bands the statistical energy analysis (SEA) is a good sub-
stitute for the classical modal approach.

In general, the modal characteristics of the dynamic system are calcu-
lated with the aid of the finite element method [Cook 89]. The accuracy is
determined by the detail of the finite element model and the complexity of
the structure. As stated above the equations of motion will be solved using
the classical modal approach and therefore linear structural behaviour is
assumed.

The structure is assumed to be deterministic, however, the acoustic loads
have a random nature. In general, the sound field is assumed to be reverber-
ant (diffuse). The sound intensity is the same in all directions.

Lightweight and large antenna structures and solar arrays of spacecraft
(Fig. 1.5) are very sensitive to acoustic loads during the launch phase.
Spacecraft external structures are subjected to severe acoustic loads.

1.2.11 Statistical Energy Analysis

The statistical energy analysis (SEA) is based on the principle of energy
conservation. All the energy input in to a system, through mechanical or
acoustic excitation, must leave the system through structural damping or
acoustic radiation. The method is fast and is applicable over a wide fre-
quency range. SEA is very good for problems that combine many different
sources of excitation, whether mechanical or acoustic.

With the SEA a statistical description of the structural vibrational behav-
iour of elements (systems) is described. In the high-frequency band a deter-
ministic modal description of the dynamic behaviour of structures is not
very useful. The modes (oscillators) are grouped statistically and the energy
transfer fronm one group of modesitoranother group of modes is statistically
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proportional with the difference in the subsystem total energies. Lyon and
DeJong wrote a very interesting book about this topic [Lyon 95].

1.2.12 Inertia-Relief

Free-free systems can move as a rigid body through space, the structure is a
so-called unconstrained structure. The stiffness matrix [K] is singular and

therefore the flexibility matrix [G] = [K]™"' does not exist. Launch vehi-
cles, aircraft and spacecraft are examples of free-free moving dynamic sys-
tems. In this chapter a method, the inertia-relief, will be derived to analyse
free-free systems. The motion as a rigid body will be eliminated and a new
set of applied loads (relative forces) will be used to analyse the elastic
behaviour of the free-free system. The relative motion and relative forces
will be introduced and a definition of the inertia-relief flexibility matrix

(Gl will be given.

1.2.13 Mode Acceleration Method

The mode acceleration method (MAM) will improve accuracy of the
responses; displacements and derivatives thereof such as element forces,
stresses, etc., with respect to the mode displacement method (MDM) when
a reduced set of mode shapes is used. The MDM is often called the mode
superposition method. The MDM may only be used for linear dynamics
systems. The MAM takes the truncated modes into account “statically”.
The MAM is, in fact, rearranging the matrix equations of motion in the fol-
lowing manner

{x} = [KI"({F(t)} - IMI{x}-[C){x}). (1.10)

Using the MAM, less modes may be in taken into account compared to the
MDM.

1.2.14 Residual Vectors

Residual vectors have been discussed by John Dickens and Ted Rose in
[Dickens 00, Rose 91]. The modal base, when the modal displacement
method [MDM] is applied, will be extended by residual vectors to account
for the deleted modes. This method is quite similar to the mode acceleration
method (MAM). Dickens proposed to construct a static mode (displace-
ment) with respect to the boundaries based on the residual loads. Rose con-
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structed a static mode, again with respect to the posed boundary conditions,
however, based on the static part of the dynamic loads

Since the residual vectors are treated as modes, they will have associated
modal mass, modal stiffness and damping. With the aid of artificial damp-
ing the responses due to the residual vectors will be minimised.

1.2.15 Dynamic Model Reduction

The combination of nonreduced finite element models (FEMs) of subsys-
tems to a dynamic FEM of the complete system (spacecraft or launcher)
will, in general, result in a finite element model with many degrees of free-
dom (dofs) and therefore will be difficult to handle. The responsible analyst
will ask for a reduced dynamic FEM description of the subsystem to manip-
ulate the total dynamic model and will prescribe the allowed number of left
or analysis dofs of the reduced dynamic model. The reduced dynamic
model is, in general, a modal description of the system involved.

The customer will prescribe the required accuracy of the reduced
dynamic model, more specifically the natural frequencies, mode shapes in
comparison to the complete finite element model or reference model. For
example, the following requirements are prescribed:

e The natural frequencies of the reduced dynamic model must deviate less
13 % from the natural frequencies calculated using the reference model.

e The effective masses of the reduced dynamic model must be within
110 % of the effective masses calculated with the reference model.

e The diagonal terms at the cross orthogonality check [Ricks 91] must be
greater than or equal to 0.95 and the off-diagonal terms must be less than
or equal to 0.05. The cross orthogonality check is based upon the mass
matrix.

e The diagonal terms at the modal assurance criteria (MAC) must be
greater than or equal to 0.95 and the off-diagonal terms less than or
equal to 0.10.

Sometimes the requirements concern the correlation of the response
curves obtained with the reduced dynamic model and the reference model.

Reduced models are also used to support the modal survey, the experi-
mental modal analysis. The reduced dynamic model will be used to calcu-
late the orthogonality relations between measured and analysed modes.
This reduced model is called the test-analysis model (TAM) [Kammer 87].
Also, various reduction methods will be discussed.

All mentioned reduction procedures are based upon the Ritz method
[Michlin 62].
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1.2.16 Component Model Synthesis

The component mode synthesis (CMS) or component modal synthesis
[Hintz 75] or modal coupling technique [Maia 97] is used when compo-
nents (substructures) are described by the mode displacement method
(MDM) and coupled together (synthesis) via the common boundaries {x,}
in order to perform a dynamic analysis, e.g. modal analysis, responses, of
the complete structure (assembly of substructures). The CMS method can
only be applied to linear structures. The component mode synthesis method
can also be applied to components for which the modal characteristics are
measured in combination with finite element reduced dynamic models.

In general, a component or substructure is a recognisable part of the
structure, e.g. for a spacecraft; the primary structure, the solar arrays, the
antennae, large instruments, etc.

In the past, the CMS method was applied to significantly reduce the
number of dofs due to the imposed limitations on computers, however,
nowadays, these limitations are more or less removed but the CMS method
is still very popular. Subcontractors deliver their reduced FE dynamic mod-
els to the prime contractor who will combine (synthesise) all these models
to the spacecraft dynamic FE model to perform the dynamic analysis on the
complete spacecraft. The same applies to the coupled dynamic-load analy-
sis when the reduced FE model of the complete spacecraft is placed on top
of the launch vehicle. In general, the dynamic FE modal of the launch vehi-
cle is a reduced dynamic FE model too.

Dynamic properties of substructures may be defined by experiment and
may be coupled to other dynamic FE models of other substructures. Hence,
there are many reasons to apply the CMS method.

For dynamic analysis the components may be obtained by reducing the
number of dofs using the MDM. The physical dofs {x} are generally
depicted on a small number of kept modes (eigenvectors), the modal base.

{x} = [®}{n}, (L.11)

e [®] The modal base consisting of the kept mode
e {n} The generalised or principal coordinates.

The number of generalised coordinates {n} is, in general, much less than

the number of physical dofs {x}.

There are many CMS techniques described in the literature. The modal
description of the components strongly depends on the boundary conditions
applied by building the reduced FE model of the component. The discus-
sion of the CMS method will focus on:

e Components with fixed-interface dofs {x,}
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e Components with free interfaces
e Components with loaded interfaces

However, we will only consider undamped components.

1.2.17 Load Transformation Matrices

The mathematical reduced (condensed) dynamic model consists of the
reduced mass and stiffness matrices. The damping matrix is generally not
delivered in a reduced form because the damping characteristics will be
introduced later in the dynamic response analyses.

Because the reduced dynamic model only consists of reduced matrices
during the dynamic response analysis no direct information about physical
responses; e.g. forces, stresses, can be made available. The reduced
dynamic model will only produce response characteristics of physical (e.g.
I/F dofs) and generalised degrees of freedom such as displacements, veloci-
ties and accelerations.

To be able to produce responses, stresses and forces in selected structural
elements during the dynamic response analyses using (coupled) reduced
dynamic models the so-called load transformation matrix (LTM) can be
used. The LTM defines a relation between forces and stresses in certain
structural elements and the degrees of freedom of the reduced dynamic
model. In general, the transformation matrix is called the output transfor-
mation matrix (OTM) [Fransen 02]. Besides LTMs displacement transfor-
mation matrices (DTM), acceleration transformation matrices (ATM) can
also be defined, however, only LTM’* will be discussed. The creation of
DTMs and ATMs is the same as the generation of LTMs.

Two methods, fixed-free and free-free systems, of obtaining LTMs are
discussed. Both methods are based upon the mode displacement method
(MDM) in combination with the mode acceleration method (MAM).

1.3 Problems

1.3.1 Problem 1

Scan an available L/V users manual with respect to the dynamic load speci-
fications that must be applied in the design of spacecraft structure. Users
manuals of L/Vs are available on the website of launcher authorities such as
ARIANESPACE, www.arianespace.com!



2 Single Degree of Freedom
System

2.1 Introduction

The single degree of freedom (sdof) system consists, in general, of a mass,
a spring and a damper and is a very important dynamic element within the
framework of mechanical vibration. The motion of the mass represents the
degree of freedom. A degree of freedom for a system is analogous to an
independent variable for a mathematical function. The mass represents the
kinetic energy, the spring the potential energy and the damper introduces
the dissipation of energy. The sdof element is illustrated in Fig. 2.1.

Mass Motion
Spring é L-‘L—‘ Damper
Fixed base

Fig. 2.1. Simple degree of freedom (sdof) element

The sdof element without a damper is called the undamped sdof system
and the sdof element with a damper the damped sdof element. In general,
the damper is a dashpot, in which the damping force is proportional to the
relative velocity of the mass. The relative motion of the mass is defined
with respect to the fixed base. In the case of linear mechanical vibration the
dynamic properties of continuous dynamic systems, such as rods, beams,
plates, etc., can be related to the sdof dynamic system.
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Continuous dynamic systems can be discretised in many connected sdof
systems, the so-called multi-degrees of freedom (mdof) dynamic systems.
Many techniques can be applied to discretise continuous systems (see
Table 2.1). The finite element method is one such frequently used tech-
nique.

Linear mdof dynamic systems can be transformed in uncoupled sdof sys-
tems using properties from linear algebra [Strang 88, Zurmuehl 64]. There-
fore much attention will be given to the sdof system.

In this chapter both the dynamics of undamped and damped sdof systems
will be discussed.

The equation of motion of the sdof system will be solved both with the
Laplace transform and the Fourier transform. The Laplace transform is used
to solve the equation of motion in the time domain (transient vibration) and
the Fourier transform in the frequency domain (steady-state vibration, har-
monic vibration or frequency responses).

2.2 Undamped Sdof System

The undamped sdof consists of a mass m (kg) and a spring k¥ (N/m) and is
illustrated in Fig. 2.2. The properties of the mass element and the spring
element do not vary in time. An external force F(r) is applied to the mass
element. The force is dependent on time.

m m l -
X(t) mx(1)
% k kx(t)

Free body diagram

F(t) F(t)

fixed base

Fig. 2.2. Undamped sdof and free-body diagram

If the mass has a small displacement x(¢) (m) and has an acceleration x(t)

(m/s2) and the mass element is exposed to several forces; an external
applied force F(r) and two internal forces; the spring forces kx(¢) and the

inertia force mx(r) . In the sense of the D’Alembert principle (Jean Le Rond
d’Alembert 1717-1783) [Meirovitch 70] a dynamic problem is treated as a
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static problem. The equilibrium of the mass element will result in an equa-
tion of motion of the sdof dynamical system.

mx(t) +kx(t) = F(1). .1

We will now introduce the radian (circular) natural frequency o, (rad/s)

which is defined as
®, = JZ 2.2)
m

The dimensions of the spring stiffness k are (N/m) or (kgm/s2m=kg/s2) and
the dimension of the natural frequency now becomes (rad/s). The
undamped natural period T, (s) is

= 2n
T, = o, (2.3)
The frequency is denoted by f, (Hz)
fi =210, = L 24
= n =g )

n

The unit (Hz), Hertz, was named after the German physisist Heinrich Hertz
(1857-1894) [Nahin 98]. Quite often instead of the unit (Hz) the unit cycles
per second (cps) is used.

Dividing (2.1) by m will result in the following equation of motion for
the sdof system

X(1) + 02x(t) = %’) = f(1). @2.5)
Equation (2.5) is a linear second-order nonhomogeneuos differential equa-
tion. The coefficients are constants.

In Table 2.1 a few examples of sdof systems are illustrated. The mass of
the beams is neglected and no shear effects are taken into account. The
bending stiffness of the beam is EI (Nm2).

Equation (2.5) and corresponding initial and boundary conditions will be
solved using the Laplace transform method and the Inverse Laplace Trans-
form [Kreyszig 93].
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Table 2.1. Examples

Example of single degree of freedom Undamped equation of motion
dynamic system . 2
x+ox =0
o2 < AE
" mL
> _ 3EI
w, = -
mL
2 _ 6EI
w, = -
mL
2 _ 24FEI
n T T3
mL
o G
oI L

e E  Modulus of elasticity (Young’s modulus of elasticity) (Pa)
1 Second moment of area (m4)

o J Torsion constant (m4)

e G  Shear modulus (Pa)

e L  Length(m)

e m  Discrete mass element (kg)

o ] Second moment of inertia (kgm2)
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The standard Laplace transform (Pierre Simon de Laplace 1749-1827

[Nahin 98]) of the functions x(#), x(¢), x(¢) and f(¢), with t>0, are [Krey-
szig 93]:

0o

L(x(2)) = _[ e "x(t)ds = X(s), (2.6)
0

and

L(x(t)) = re‘“x(t)ds = sX(s)-x(0), @7
0

and

L(x(1) = ‘re_”)'c'(t)ds = 5°X(s) - sx(0) - £(0) , (2.8)
0

and

Lo = | e ords = FGs). 2.9)

0

2.2.1 Solution of an Sdof System with Initial Conditions

We will solve (2.5) with the aid of the Laplace transform with a zero exter-
nal force, f(r) = 0, however, with the initial conditions, namely x(0) = x,

and x(0) = 0. The Laplace Transform of the homogeneous equation of
motion (2.5) is
LIX(1)] + opLLx(1)] = L[0],
or
s2X(s) - sx(0) — x(0) + ®-X(s) = 0.
After the introduction of the initial conditions we have
s2X(s) — 85X, + wiX(s) =0.
We will find the following relation for X(s)

5X,
. (2.10)
5T+ o,

X(s) =

The inverse Laplace transform is defined as

(®]. (2.11)
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The Laplace transform of the function g(¢) = cosw,? is

Llag(n)] = 5. (2.12)
5"+ o,

Finally the solution of the homogeneous equation (2.5) with initial condi-
tions x(0) = x, and x(0) = 0 is

2 2

(1) = L [X(s)] = L—‘[ o } = x,c08(®,1). 2.13)
s+ )

Assume the initial conditions are specified for both the velocity and the dis-
placement, x(0) = v, and x(0) = x,.
The expression for X(s) becomes

Xy = o 5X,
(s) = ) > + - 2 (2.14)
s +0, s +0,

The Laplace transform of the function g(¢) = sinw,¢ is

Liag(t)] = ——. (2.15)
s +w,

The final solution of the homogeneous equation (2.5) with initial conditions
x(0) = x, and x(0) = v, is

SX,

1 _1[ v, o } sin(®,?)
x(t) = L [X(s)] = L + = x,c08(®,1) + v,

e .(2.16)
s+, s+

This solution for x(z) is called the complementary function and is associ-
ated with the initial conditions.

2.2.2 Solution of an Sdof System with Applied Forces

The solution of an sdof system with applied forces can be divided into two

categories:

¢ Enforced motion; displacement, velocity and acceleration or combina-
tions. In this book we will only consider sdof systems with enforced
accelerations or base excitation. Enforced motion can be translated into
applied forces.

e External forces applied to the sdof system
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Enforced Accelerations
An sdof system with a discrete mass m and a spring element & is placed on
a moving base, which is accelerated with an acceleration u(¢). The result-

ing displacement of the mass is x(¢). We introduce a relative motion z(r),
which is the displacement of the mass with respect to the base. The relative
displacement is

m T
x(t)

k

2(t) = x(t)—u(z). 2.17

T u(?)
moving base
Fig. 2.3. Enforced acceleration on an sdof system

The spring force F(r) acting on the mass element is

Fy(t) = k{z(D)} = k{x()-u(0)} . (2.18)

With reference to Fig. 2.2 and (2.1) the equation of motion of the enforced
sdof system in Fig. 2.3 is

mx(t) + k{x(t)-u(t)} = 0. (2.19)
Introducing the relative motion z(¢) and z(r) (2.19) becomes
mz(t) + kz(t) = -mu(t), (2.20)
or
Z(0) + lz(t) = —u(t). (2.21)

The enforced acceleration of the sdof system is transformed into an external
force. The absolute displacement x(¢) can be calculated with (2.17) or

X(t) = 2(0) +1(t) = —022(1). (2.22)

A Sinusoidal Enforced Acceleration
We start with the zero initial conditions z(0) = 0 and z(0) = 0 the sdof
system will be enforced with sinusoidal acceleration, assuming ® # ®,
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i(t) = Asinot. (2.23)

The Laplace transform of (2.21) is now

$Z(s) + 01 Z(s) = ~A5——. (2.24)
s+
The Laplace transform Z(s) becomes
Zs) = A2 (2.25)
S+ +0

The inverse Laplace transform of (2.25) is from [Kreyszig 93]

2t) = L{Z(s)}= 2‘A 2(2sinmnt—sinmt). (2.26)
© - o, \Pn

The solution for z(¢) is called the particular integral and is associated with
the forcing function. When o = o, the solution of (2.26) does not exist.

Applying the 'Hopital rule, differentiating the numerator and the denomi-
nator and let ® — o, , we find

z2(1)= _—Az(sinmnt— ©,1Cos@,1) . (2.27)

2m,

The last term of (2.27) grows out of bounds, indicating resonance. The rela-
tive acceleration z(t) for w# o, is found after differentiation of (2.26)
twice with respect to time.

2

i) =~ sinw,t - sinor). (2.28)
0 -0 \®
External Forces
We recall here (2.5) of the sdof system illustated in Fig. 2.2
i+ o = 20 = q.

Assume zero initial conditions with respect to the initial displacement and
velocity; x(0) = x(0) = 0. The Laplace tranform of (2.5) becomes
s*X(s) - sx(0) — x(0) + @ X(s) = F(s).

After the introduction of the initial conditions the expression of X(s) will
be
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FG) — po——. (229)
s+ o, s+ o

X(s) =
The convolution product is defined as [Stephenson 70]:

fiyra) = [ fe-van = [ fingt-v, (230)
0 0

and the Laplace transform of the convolution product is [Stephenson 70]:

L{f(1)*g(1)] = F(s)G(s). (2.31)
Applying the convolution theorem to (2.29) we obtain

sin, (t - ! sinw, T
x(t) = j ————f(t)d - j = f(- Ty, (2.32)
0 n 0 n
or
' sinw, 1 4
x(t) = j "t —T)dT = J' ROt - 1)dr (2.33)
0 n 0

sin t . . .
where h(t) = =~ is the undamped impulse response function.

n

The total solution of (2.5) is the superposition of the solutions of (2.16),
with the initial conditions x(0) = x, and x(0) = v_, and the particular

solution (2.32)

0°

x(t) = x,cos(m,1) +v,

Sin (@, ) jsmm f(t-1)dt. (2.34)

n

2.3 Damped Vibration and the Damping Ratio

A viscous damper element will now be added to the sdof system as illus-
trated in Fig. 2.4. The damping force is proportional to the relative velocity
of the mass element. The mass m, spring stiffness k¥ and the damping con-
stant ¢ are constant with time. The damped sdof has linear properties.

In the sense of d’Alembert the mass is in equilibrium, the internal forces are
in equilibrium with the external force, with F,,., = —-mx(t), the equation

of equilibrium can be written as follows
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l F(1) l
’ | lxm
ké e

fixed base

F(t)

" l x(1))
mx(t
kx(IJT T cx(t)

Free-body diagram

Fig. 2.4. Sdof system with damper

F inertia T F damping +F stiffness — F, external * (235)

In terms of the motion of the mass this means

mx(t) + cx(t) + kx(t) = F(1), (2.36)

where
e ¢ the viscous damping constant (Ns/m)

With the introduction of the natural radian frequency o, = A/z and the crit-
m

ical damping constant c_;, = 2+km and the damping ratio { = C—C“ the

crit

damping constant ¢ can be expressed as follows

c g%ﬁ‘ = 2§A/§ = 2L, . (2.37)

m

The critical damping is the minimum damping that results in non-peri-
odic motion of the sdof system under free vibration. The damping ratio is
the ratio of the sdof system’ actual viscous damping to its critical damping.

Dividing (2.36) by the mass m the equation of motion of the damped
sdof system becomes

(1) + 280, 5(r) + 0x(t) = % - f(1). (2.38)
We will investigate the influence of the damping ratio on the solution of
the second-order linear homogeneous equation of motion, with f(r) = 0.
x(t) + 280, x(1) + mﬁx(t) =0.
We try the following solution for x(#)

x(t) = &, (2.39)
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which results in the characteristic equation

A2+ 2Lm A+ wi =0. (2.40)
The solution of (2.40) is
Ao = 0y(-CENE-1). 2.41)

We consider three cases for the damping:

1. The system is underdamped, { < 1 ; the damping ratio is less than the
critical damping ratio, the sdof system will show oscillatory (periodic)
behaviour (two conjugate complex roots).

2. The system is critically damped,{ = 1; the damping ratio is the critical
damping ratio, the sdof system shows aperodic (nonoscillatory) behav-
iour (repeated real roots).

3. The system is overdamped,{ > 1 ; the damping ratio is greater than the
critical damping ratio, the sdof system shows nonoscillatory and expo-
nentiallly decaying response behaviour (real roots).

2.3.1 Solution of the Sdof System in the Time Domain

The Laplace transform of (2.38) is
$°X(s) - sx(0) — £(0) + 2{0,{sX(s) - x(0) } + @ X(s) = F(s). (242
With initial conditions at ¢ = 0, x(0) = x, and x(0) = v,, X(s) becomes

1

X(s) = 5
s"+5Qw,) +©

s{x,(s + Cy) +x,8, + v, + F(s)}. (2.43)

n

Below critical damping { <1
Equation (2.43) becomes

1
o o L0, + v, + F . (244
(s+§mn)2+m121(1—§2){x (s+fm,) +x,80, +v,+ F(s)}

The damped natural (circular) frequency w, (rad/s) is defined as

X(s) =

oy = o1-0. (2.45)

The solution of (2.44), the inverse Laplace transform, is
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Lo,/
x(t) = x,e ¢ (cosa)dt+

—q—sin(ot
J1-¢ dJ

. t .
— O] — SIn®,T
type M2 [e bont Z004E p(1-1)- dr]. (2.46)
Wy 0 (OF
The function
_to. tSINO, ¢
h(t) = ¢ O Im0d (2.47)
Wy

is called the damped impulse response function, which is, in fact the
response of the damped sdof system, with zero initial conditions, and as
external force the Dirac delta function 6(¢) (P.A.M. Dirac, 1902-1984).
The Dirac delta function has the following properties:

e §(t) =0 fort=0

. f (Hdr = 1

o [ sunsu-ay = fla)

sinwgt

In (2.47) P represents the exponentially decay and the periodic
d

motion.

Equal to critical damping { = 1

Equation (2.43) becomes
X(s) = S{X(s +0,) +x,0, + v, + F(s5)}. (2.48)
(s+m,)
The solution of (2.48) is
t
- t - -
2= xe (L4 1)+ E)‘Le oty j te - t)dt. (2.49)
n 0

Above critical damping { > 1
Equation (2.43) becomes

1

(s + o) -0X(C - 1)

X(s) = {x5(5+ Co,) +x S, + v, + F(s)}.  (2.50)
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The solution of (2.50) is, with

Q, = o N1 (2.51)

x(1) = xoe_qm"t(coshﬂdt+ sintht)

&
J1-0

e_gmn,sintht . j" e_g(,m sinh 2,1

+v, Q, —S—ld—f(t -1)dt. (2.52)

In this book no further attention will be paid to damped dynamical sys-
tems with damping ratios equal to or higher than the critical damping ratio
(§=1). In general the damping ratios 0<{<0,1 are very common in
spacecraft primary structure design, appendices and electronic boxes. In
most cases the damping in structures is represented by the modal viscous
damping ratio. Later in this book another model of damping idealisation,
the structural damping (hysteresis), will be discussed.

An sdof dynamic system is given by [Kreyszig 93]

9.082x(t) + cx(t) + 890x(t) = 0

When it is subjected to x(0) = 0.15 m and x(0) = 0 m/s. How does the
motion change if the sdof has damping given by

1. ¢ = 200.0 Ns/m
2. ¢ = 179.8 Ns/m
3. ¢ = 100.0 Ns/m

Solution 1
9.082x(¢) + 200.0x() + 890x(t) = 0.

The damping ratio { = —_ = L11>1.

2. Jkm
The solution can be written as x(¢) = Aex', thus  with
A, = —11.01 £ 4.822 we can solve the constants A; and A, of equation

A A .
x(t) = Aje "+ Ay . With A, +A, = 0.1500 and LA, +XA4, = 0 the

solution becomes

-6.190t ~15.83¢

x(t) = 0.246e —0.096e

Solution 2
9.082x(¢) + 179.8x(¢) + 890x(¢) = 0.
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C
2.Jkm

The solution can be written as x(z) = Aek’, thus with A = -9.899 we can

The damping ratio { = =1.

solve the constants A, and A, of the equation x(f) = A,e" + A,te"' . With
A, = 0.1500 and AA, + A, = O the solution becomes

x(t) -9.899¢ )

(0.1500 + 1.4851)e
Solution 3

9.082x(t) + 100.0x(t) + 890x(¢) = 0.
The damping ratio { = —— = 0.56<1.

2.Jkm

The solution can be written as x(¢) = AeM, thus  with
Ay, = —5.506 £8.227 we can solve the constants A; and A, of the equa-

. A A .
tion x(r) = Ay " +Ae ™ . With A, +A, = 0.1500 and A, A, +1,A4, = O the
solution becomes

x(t) = {0.1500c0s(8.227¢) + 0.1004sin(8.227)}e >

2.3.2 Solution of the Damped Sdof System with Applied Forces

The solution of a damped sdof system with applied forces can be divided

into two categories:

e Enforced motion; displacement, velocity and acceleration or combina-
tions. In this book we will only consider sdof systems with enforced
accelerations or base excitation. Enforced motion can be translated into
applied forces. The sdof system is illustrated in Fig. .

e External forces applied to the sdof system.

Enforced Accelerations
An sdof system with a discrete mass m, a damper element ¢ and a spring
element k is placed on a moving base which is accelerated with an acceler-

ation u(¢) . The resulting displacement of the mass is x(¢). We introduce a
relative motion z(¢) which is the displacement of the mass with respect to
the base. The relative displacement is

z(t) = x(t) —u(t) (2.53)
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ké LIJC/’\JC(IJ

T u(t)
moving base

Fig. 2.5. Enforced acceleration on a damped sdof system
Analogue to (2.21) we can write

(1) + 280,2(1) + 0oz(r) = —ii(r) (2.54)

The enforced acceleration of the sdof system is transformed into an external
force. The absolute displacement x(¢) can be calculated with (2.54) or

X(1) = 2() + () = 2L, 2(1)-02z(t) (2.55)

We start with zero initial conditions z(0) = 0 and z(0) = 0 and the sdof
system will be enforced with a sinusoidal acceleration

u(t) = Asinwt (2.56)

Equation (2.54) may be solved with the aid of and with the initial condi-
tions, the displacement z(0) and thevelocity z(0), the solution for z(¢) is

2(1) = z(O)e_gm"t(cosa)dt + J—_c_—zsinmdtJ
1-¢

. ; .

. —anrSmOJ t _go)"tSIIl(D T

+2(0)e " —L_ 4] e d
0y . oy

sinw(t —T)dt 2.57)

The solution of (2.57), the relative displacement z(¢) is

{1 - (mﬂ)z}sinmt - ZC((DQ)cos ot

z(t) = e—cm"t(Bcosde Csinw,t) - . (2.58)

58.\)‘}
sy
|
/N

Lle
N——
N
[\*)
+
N
[\S]
ux
Lle
N——

The relative velocity z(¢) becomes

@=re > (COEBOE)CosOF=(COL + Bo,)sin,1]
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{1 - (0)2)2 }cos ot + 2@((0%) sinot

—i(i”—) . (2.59)

2 2 2
f-(2)} +(22)
(ol'l (l)n
The relative acceleration z(z) becomes
(1) = e ' [(Boil’-2Cw,0,§ - Bol)coswyt)]

+e (COE + 2Bw,0 (-Col)sinw,t]

[J1-(2 fsnon-2g( & )eoso
(] s

The constants B and C can be determined by evaluating (2.58) and (2.59)

(2.60)

for the boundary conditions z(0) = z(0) = 0:

B=-2 : , (2.61)
@] )
and
(2
c= oot o(3) {1 _(g)z}({ o .62

2.3.3 Solution in the Frequency Domain

Solving (2.38) in the frequency domain means forced-response characteris-
tics (particular integral) of the sdof system are taken into account. No initial
conditions are taken into account. They are assumed to be damped out. This
type of response analysis is often called forced responses, frequency
responses or steady-state responses. We will solve (2.38) with the use of the
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Fourier transform technique (Jean Baptiste Joseph Fourier 1768-1830).
The Fourier-transform of a function x(¢) is defined by [James 93]

oo

F{x()}= X(®) = J' x(t)e?®dt, (2.63)

—oo

and the inverse of the Fourier transform is
FHX()}= x(t) = ijm X(w)e” dw (2.64)
o) . .

Some authors introduce the factor L not in (2.64) but in (2.63), or L

on on

in both equations for reasons of symmetry. We have adopted the above
because it is commonly used in the engineering literature.

The Fourier-transform of the first time derivative of x(¢), the velocity
x(1)

oo

FLa(1)}= joX(0) = J (e dr (2.65)

The Fourier transform of the second time derivative of x(z), the accelera-
tion x(¢) is

oo

F{#()}= (j0)’X(0)= -0’X(®) = f X(1)e 7 at (2.66)

—oo

The Fourier-transform of (2.38) is
- 0°X(0) + 2o, 0X(0) + 0 X(0) = F(0). (2.67)

We make X(w) now explicit, thus

X(0) = ——®) (2.68)
(0, — o) +2jm,»
The receptance o(®w) becomes
22 o
() = X©@ _ (0, - 0") -2jlw,0 (2.69)

FO) (o~ o)) 4 2Lo,0)

The absolute value of the receptance |o(®)| is
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(o) = [X(@) = 1 . (2.70)
‘F @ Jio?- )’ + 2Co,0)°

The absolute value of the receptance |o(w)| reaches a maximum value at
the resonance frequency o, (rad/s)] if , [Friswell 98],

res

W = 0 41-28%. @2.71)
The damped natural frequency is w; = @ /1 - ¢,

Enforced Accelerations
We will solve (2.54)

(1) + 28, 2(1) + @-2(1) = k(1)
in the frequency domain assuming a base excitation like (2.56)
u(t) = Asin(wt)
The Fourier-transform of (2.54) and equation (2.56) is

- wZZ(w) +2j{w,0Z(w) + (oiZ(u)) = —A’J—F[S(m— 0)-d(w+w)]. (272

The inverse Fourier-transform of (2.72) is

oo

-1 Jnf [0+ ®)-6(w-n)] jor
()= F {Z(0)} = -AL= ¢ do . (2.73)
‘ 27"[_3., (0> - 0%) +2jfo,0
Finally, the solution of the relative displacement z(r) becomes
«1) = —A Si“(‘;" ) LA 2.74)
J(mﬁ - (02) + (213(1),,00)2
where the phase angle ¢ can be calculated with
2o, o
tang = ——"— . (2.75)
((Dn -0 )
The relative velocity z(t)
3t) = -Ao——03(2- Q) : (2.76)

J@ - o) + (2lw,0)

and the relative acceleration z(¢)
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2) = A’ Sin(‘;’"‘p)’ = —0’z(1). Q.77)
J@ -0 + (2L0,0)
We can rewrite (2.74), (2.76) and (2.77) as follows
2(1) = |Z((0){sin(((0—(p)t+ 117:) (2.78)
57 ), )
and
2(t) = 0|Z(w)|sin((0-@)t +27), (2.79)
and
(1) = mZIZ(m)lsin{(m—(p)H 2%1:}. (2.80)

This means that the relative velocity z(z) has a positive phase shift of

= %n rad with respect to the relative displacement z(¢r) and the relative

acceleration z(r) has a positive phase shift of 6 = © rad with respect to
the relative displacement z(¢) . |Z(®)| is the modulus or vector length of the
harmonic displacement of z(r) with a forced excitation frequency .

A

Z()| = 2 .
J@2 oD + 2Lw,0)°

(2.81)

In fact, the moduli of the displacement z(t). the velocity z(¢) and the
acceleration z(¢) are the frequency responses due to the enforced harmonic
acceleration u(7) = Asin(®?).

In the complex plane (Wessel! or Argand diagram) means the multipica-

tion with j a positive phase shift of 6 = %n rad. The multiplication of the

displacement z(¢) with jo is differentiating with respect to time of with
z(t). Instead of using the harmonic function sinws we will use the har-
monic function ¢, with j = /=1 (rotation operator). Euler’s formula,
published in 1748 by Euler?, [Nahin 98], tells us that

1. Casper Wessel 17451818, [Nahin 98]
2. Euler’ identity
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Z° = sin(wt) +jcos(or). (2.82)
The series of ¢* can be written as
, L2 .3 4 S
= 1+jx+(‘];!) +(’;!) +(’:!) +(’;!) Fo
jx x2 x4 x3 X5 . .
&= (1 3 +Zi_'")+](x_§+§—"') = cos(x) +jsin(x).

Equation (2.82) is illustrated in Fig. 2.6.

sin(®?)

L |ejmt|___1

cos(mt)

I

I

wt |
. R

Fig. 2.6. Complex plane (Wessel or Argand diagram)
We will solve (2.54)

Z(1) + 280,2(1) + 022(t) = —ii(r)
in the frequency domain assuming a base excitation like (2.56)

i=Ad". (2.83)
We assume now that the displacement is
2(1) = Z(w)e™". (2.84)
Substituting (2.84) into (2.54) we find for Z(jo)
-A

Z(w) = . (2.85)
ol -0+ 2o
We rewrite (2.85) as follows
2 2 .
- -0 -2
Zw) = A0, - 0" - 2jo,0) (2.86)

(@ - 0)’ +(2Lw,0)°
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Z)| = S{R@DY +{3(2)} = 2 X 1)
A/(o)ﬁ—coz) +(2Cconm)2
and the associated argument Arg(Z(m))
_ 32| _ 20,0
Arg(Z(w)) = atan{s(z)} = atan{———mi_m2 . (2.88)
The velocity z(f) now becomes
(1) = joZ(w)d” = Z(w)d™, (2.89)
and the acceleration z(7)
(1) = (j0)’Z(0)d® = -0*Z(w)"" = Z(0)d®". (2.90)
The associated arguments for z(¢) and z(r) are respectively,
Arg(2(1) = 7 + Arg(Z(0)) @91)
Arg(z(1)) = + 7 + Arg(Z(w)) . (2.92)
The absolute acceleration becomes
I _ ©’A
(0) = Z(0)+A = +A (2.93)
o, -0 +2{ow,0
or
A(l + 2jz;—‘9)
.. . o,
X(®) = Z(0)+A = ———— (2.94)

2

) )
1-=+2i{—

2t chn

n

The result of (2.94) is similar when (2.56) has been used.
Instead of using the formal Fourier-transform for solving the frequency

responses of the sdof system exposed forced vibration we use ¢ to
achieve solutions of response functions in the frequency domain.

Frequency Response Function

The frequency response function (FRF) H(w) is defined as the quotient of
the frequency response of the accelerations with respect to the base acceler-
ation (2.83), however, both in the frequency domain
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H(m)A = Z(0). (2.95)
Thus the FRF becomes
2 2
H(®) = 54‘”) =2 (2.96)
0, -0 +2j{o,o
o’ 1
H(0) = 55— - (2.97)
Oy _ 0 Hr @
1 u)i + Zﬂ;wn
The FRF with respect to the absolute accelerations H, (0)A = X (®)
1+ 2jz;a-‘§’—
H(w) = —5——. (2.98)
) )
1- m—ﬁ + 2JC0.TH
Forcing Function f(7)
We will solve (2.38):
50+ 280k + () = T = fr)
in the frequency domain assuming the forcing function
= o jor
finy = =2 (2.99)
We now assume that the displacement is
x(1) = X(w)d®' (2.100)
The frequency response function X(w) becomes
FO FO
X(w) = (2.101)

2 2 = ’
m(o, -0 +2jCn o B
( n ]C_, n ) mmi(l_mz"'z]C:))J
()] n

n

. D F, .
or expressed in the static displacement x, = f (m), using (2.2).
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X((D) = Fo - xstat

2 2
0 .0 O .0
H1-Z 4202 |1-L 422
[ m2+ ]C")) [ (o2+ ]C‘Dn]

n
n n

The absolute velocity x(¢) now becomes
x(1) = joX(@)d® = X(0)d”,
and the absolute acceleration x(t)

(1) = (j0) ' X(0)d” = —0’X(0)d® = X(w)d™ .
Frequency Response Function

The following FRF can be derived:
X(w) _ 1

Xt 2
- (1—%+2j§g)
[()) n

n

)

and the modulus is

1

[-2-b)
mn (")n

X(m)
X

stat
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(2.102)

(2.103)

(2.104)

(2.105)

(2.106)

Alternative forms (names) of the frequency response function [McCon-

nel 95, Maia 97] are:
displacement response
force excitation

e Receptance o(w)= H(®) =

displacement response
force excitation

e Admittance o(®) =

displacement response
force excitation

e Dynamic compliance o(®) =

. . velocity response
* Mobility Y(0)= joH(o) = force Zxcitgtion
acceleration responsee

force excitation

e Accelerance A(m)= joY(w) =

acceleration response
force excitation

e Inertance A(®) =

___ force excitation
o(w) | displacement response

¢ Dynamic stiffness
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_force excitation
Y(w) velocity response

e Mechanical impedance

_ force excitation
A(w)  acceleration response

e Apparent mass

_ force excitation
A(®w)  acceleration response

e Dynamic mass

2.3.4 State Space Representation of the Sdof System
In (2.38) the equation of motion of a sdof dynamic system has been
derived. We assume underdamped damping ratio ({ < 1) characteristics.

FO _ 1.

(1) + 280, %(1) + 02x(t) = ===

We will now introduce the state space variables y()

y(t) = { 710 } = { ’f(t) } (2.107)
¥(1) x(1)
Rearranging (2.38) we get the space state equations of motion
N0 02 1 { 1 }+{ 0 } (2.108)
ya(1) -0, —28w,| L ¥2(?) S0

Response Analysis in Time Domain
With initial condition s at # = 0, y,(0) = x, and y,(0) = v,, the equation
to solve the Laplace-transform, becomes

R IS S B
0s+m,+20m,| | Yy(s) v, + F(s)

The solution for y,(#) = x(¢) becomes (see also (2.52))

()= x(t) = xoe_gw"'(cosmdw —g—sinmdtJ
e

. 11 .
_gmngsm(ﬂdl‘ J‘ —C(on‘t sin (DdT
e —+ e

+v > —G-)d—f(t—'c)dr, (2.110)

0
0
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and the solution for y,(¢) = x(1) is

_ - _ -Cw,t B Z .
Yo(t)= x(t) = vee (coswdt— A/1__§2s1n(x)dt]

. 13
- SIn®, ¢ -
-X,e bont 202000 +J e cm"t[cosmdr— & sinmdt}(t—t)dr.(z.lll)
Wy 0 /1 _ C2

Frequency Response Analysis
The forcing function in the frequency domain is assumed to be

(1) = %e""". (2.112)

We assume now that the state vector is

(0} = (Y@} 2.113)
The equations written in the frequency domain are
; 0
-1
/o ) { hi(@) } =< F (2.114)
0 jo+w,+20m,|l Y () ;"

The solution of (2.114), ¥,(®) = X(») becomes

Ty

Y,(0) = X(@) = -2 . , (2.115)
mz(l ~2. 2j§2]
n 2 o,
and the solution for ¥,(0) = X(w) is
’ Fo Jjo .
Y,(0) = X(0) = = > = joX(0). (2.116)

m
2| (0] . O
(l)n(l - ——2 + ZJCO)_J
® n

n

The damped natural frequencies can be obtained by calculating the poles of
X(w) or X(O)) with
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2
[O) . @
[1——2+2]Cm—J =0. (2.117)
(O] n

n

This means that the damped natural frequences become

L2t = —g-i1-g
2. % = _g+j1-C

n

The natural frequency o, is obtained with

W0
122 =1, (2.118)
mn

and the damping ratio { is calculated with

_((nI +®,)
20,

¢ = (2.119)

A certain sdof dynamic system, enforced with a Dirac delta force, can be
described with the following equation of motion.
x(8) +x(¢) + 100x(¢) = 8(z—1).
The characteristics of the damped sdof system, the displacements, the

velocities and the accelerations in the time domain will be calculated.
The space state equation of motion becomes

$1(1) =[0 IHW)H 0 }
(1) ~100 = 1] | y,(2) 8(t-1)

with initial condition at t = 0, y,(0) = 0 and y,(0) = 0.

The eigenvalue problem is obtained by substituting for {y} = {y(}) }eM
in the homogeneous state space equations of motion

A -l {yl(k)}z{o}.
100 1+A|| y,(A) 0
The eigenvalues A, and A, are

o A, = -05-99875
o A, =—0.5+9.9875



2.4 Problems 45

From (2.118) we obtained the natural circular frequency of the sdof
dynamic system

®, = Jhh = J(0.5)% +(9.9875)% = 10,
and from (2.119) the viscous damping ratio {

(Mt
S T

= 0.05.

n

The solution for the state variables is y,(r) = x(¢) and y,(t) = x(7).
With @, = 10, { = 0.05 and @, = o1-{> = 9.98749
! .
yi(1)= x(H)= 100 j oot Mts o 1yar,
0 ®q
and
t
y,(1)= x(1)= IOOI e—Cmnr(cosde___Q_ sinmdt]ﬁ(t—t— 1)dr.
0 J1- gz

It is a good excercise to evaluate the two previous relations.

2.4 Problems

2.4.1 Problem 1

A 1000 kg mass is attached to a spring such that the natural frequency is 25
Hz. What is the spring constant k¥ (N/m)?

Answer: k = 24.67 10° N/m
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2.4.2 Problem 2

Derive the radian natural frequencies for both sdof dynamic systems as
shown Fig. 2.7, [Norton 89]

Answers: o, = Jzz(,mz = f—z—k—
m m

2.4.3 Problem 3

Assuming a clamped-free massless elastic beam with bending stiffness EI,
derive an expression for the natural frequency of the dynamic system.

Z &
S g

Fig. 2.8. Beam—springs—mass system

Hint: Calculate the displacement & caused by the inertia force mg applied

to the mass. The spring stiffness is given by & = 3EI . The natural fre-

21
quency f (Hz) can be calculated with f = ﬁ A/%

Answer: f = 0.191 E—I3 Hz.

ml

2.4.4 Problem 4

A mass oscillates harmonically with an amplitude of 0.002 m and a fre-
quency of 35 Hz. What are the values of the maximum velocity v in (m/s)
and the maximum acceleration a in (g) (9.81m/s2)?

Answers: v = 0.44 m/s, a = 9.86 g.
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2.4.5 Problem 5
Derive the expressions for the mobility and impedance of a mass element, a
spring element, viscous-damping element and a mass—spring—damper sys-

tem. For the answers see Table 2.2.

Table 2.2. Element mobility and impedance

Element Mobility Impedance
Mass 1 .
— jm
jm®m
Spring jo k
k jo
Damper 1 c
c
Mass—spring—damper 1 k
———'—k_ Cc +j(m0) - —)
c+ j(m(o - —-)
(O]
2.4.6 Problem 6

An sdof dynamic system is desribed by

x(t) + 4x(t) + 5x(t) = 8cost.
Calculate the radian natural frequency ®, and the damping ratio .
Solve the forced equation of motion using the Laplace-transform subject to
the initial conditions x(0) = x(0) = 0.
Answers: ®, = /5, { =089, and x(f) = cost+ sint—e ~'(cost + 3sint)
[James 93].

2.4.7 Problem 7

The mass m of the mechanical system of Fig. 2.9 is subjected to a harmonic
forcing sin(wt) . Define the steady-state response of the sdof system.
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sm(mf)‘L gr L
m l
x(1)

Fig. 2.9. Mechanical system

2.4.8 Problem 8

Show that the maxima and minima of an underdamped motion occur at
equidistant values of , the distance between two consecutive maxima

. 2n
being =—.
g oy




3 Damping Models

3.1 Introduction

For transient vibration, damping is less important than for harmonic (sinu-
soidal) vibration. In the case of harmonic vibration the damping in struc-
tures plays a very important role to reduce the responses. At the resonance
frequencies the inertia loads are in equilibrium with the elastic loads; there-
fore the applied external loads are balanced by the induced damping loads.
The lower the damping, the higher the responses in the structure, because
less energy is dissipated. When the damping is very low the responses can
be so large that damage is caused to the structure.
Damping may be categorised as follows [Beards 96]:

Passive damping

Inherent damping

Added damping

Active damping

Inherent damping in a structure is largely determined by the materials
used, the type of construction and the assembly. In general the damping in
pure materials is very low. The friction in structural joints, cable booms,
etc., will give a much higher damping than the material damping only. In
lightweight and large structures; solar arrays, antenna dishes, etc., the
acoustic radiation will also contribute to the damping due to the dissipated
energy of the occurring sound.

Damping from other (external) sources may be added to the inherent
damping in the structure. The application of passive dampers and damping
layers are examples of extra damping introduced in a design. In the case of
prescribed response amplitudes (acceleration, etc.), responses will be con-
trolled by use of active damping.
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Only the inherent damping in structures is discussed in this chapter. The
phenomena of increased damping due to increases in the input levels and
frequencies is not considered here.

3.2 Damped Vibration

For treating mechanical vibration the single degree of freedom (sdof) sys-
tem is the simplest mechanical oscillator. The sdof system consists of a dis-
crete mass and a massless linear spring connected to the mass and the base.
In general a damping element (linear or nonlinear) may be active in parallel
with the linear spring. The relative displacement of the discrete mass with
respect to the base is defined as x(¢) (m). Applying an excitation force F(t)

(N) to the mass m (kg), the equation of motion of such an sdof system is
[Beards 96]:

F@) _

. fd 2 _
x(t)+a+(onx(t)—- i

(), (3.1
where

e ®-= F is the natural circular frequency (rad/s).
m

The damping force f; (N) may be caused by:
Material damping

e Air damping

e Acoustic damping

e Joint damping (rivets, bolts, bonding)

3.2.1 Linear Damping

For linear damping, the damping is either linearly proportional to the veloc-
ity x(t), the so-called viscous damping, or is linearly proportional to the

elastic force, kx(r), the so-called structural damping. Hence the damping
force can be defined as:

e Viscous damping f; = cx (N)
e Structural damping f; = jgkx (N)

At the resonance frequency of a harmonic vibration, both viscous damp-

ing and structural damping forces exhibit a positive phase shift of g rad
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with respect to the elastic force. Structural damping is proportional to the
stiffness. The phase shift of g rad for structural damping is obtained by

multiplying the proportional part of the elastic force with the complex
number j = -1 [James 93].

The introduction of complex numbers in the mathematical model limits
the application of the structural damping only for harmonic vibration. At
the resonance frequency the harmonic inertia loads have a +n rad phase
shift with respect to the elastic forces.

In general, the mathematical models of viscous damping and structural
damping are applied to linear mechanical vibration. They are easy to under-
stand and to use in dynamic response analysis of harmonic vibration.

The concept of viscous damping may also be used in transient vibration.

3.2.2 Viscous Damping

The equation of motion of an sdof system, assuming linear viscous damp-
ing and a mass excited by an external load is:

mx(t) +cx(t) + kx(t) = F(1), (3.2)

where
e ¢ isthe viscous damping constant (Ns/m).

Dividing (3.2) by m
F(1)

X(t) + 28w, x(1) + 02x(1) = == = f(1), (3.3)

where
Ceir = 24/km i the critical damping (Ns/m)

o (= < is the damping ratio

Cerit

€ _ plait _op |k _
o= (o og X < g,
3.2.3 Structural Damping

The equation of motion of an sdof system, assuming linear structural damp-
ing and the mass excited by an external load is:
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mx(t) + k(1 +jg)x(t) = F(1), (3.4)

where
e g is the structural damping ratio (hysteric damping) (-)

Dividing (3.4) by the mass m gives
E(1)

X(1) + @y(1+jg)x(1) = == = f(0). (3.5)

3.2.4 Loss Factor

When damping is general it is commonly quantified by the loss factor. The
definition of the loss factor is [Thomson 98]:

(3.6)

o Iy, = §fDdx is the dissipated energy per cycle

I,
o ZATCSS is the damping energy per radian
e E . is the peak potential energy.

For the viscous damping ¢ and with x(¢) = Asin(w? - ¢), the damping
energy loss is given by

My = §fpdx = feidx = jﬁciczdt = ncwA® = 2(nA’okm,  (3.7)

and with
E,.. = kA%, (38)
2
we obtain
I giss _ (O
n= 2mE,__ = (mn)ZC. (3.9

At the natural frequency o, the loss factor n = 2.
In the case of harmonic vibration the structural damping

n =D - gy

m
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can be expressed as the following equation x() = Asin(®wf—@):
2

" o) .
i) +(S2)ein + olan) = 2 = .
The dissipated energy per cycle is
M, = §fDdx - §—gxdx - {>—gx dt = ngw?A?, (3.10)
and with the peak potential energy given by
Epa = 1(1)2A2
we obtain
1-[diss -
n=otm oy (3.11)

max

3.3 Amplification Factor

The maximum absolute response of the sdof system, either with viscous or
structural damping is very close to, or the same as, the natural frequency.
(With viscous damping the maximum amplification occurs at

0 =0, 1-2¢%, but the damped natural frequency is given by

0y = O,41- ¢*). The maximum absolute value of the frequency response

function (FRF) at the resonance frequency is called the amplification factor
(quality factor, magnification factor) Q. The FRF can be obtained by

applying a unit forcing function f(r) = . The response of the discrete

mass can then be assumed to be x(¢) = X(jw)ei"". This solution for x(t)
will be substituted in the equations of motion of a simple mass—spring sys-
tem with either viscous or structural damping.

3.3.1 Modal Viscous Damping

The equation of motion of the sdof system with modal viscous damping is
X(1) + 280, %(1) + o2x(t) = f(t).
The frequency response of x(t) is X(jm)
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X(0) = SH(o), (3.12)
(on
where
o H(m) = 1 is the frequency response function (FRF)

[-() 2@

The modulus of the FRF, H(jw) is

|H(w)| = . (3.13)

The maximum value of |[H(®)| is
1
H(®)| = —/——,
20W1-¢

and will be reached at an excitation frequency

® = o 1-2¢. (3.14)

In general, the natural frequency o, is:

1 1
|t 1-200)| = —L—= 0=~ |H(o,)| = %. (3.15)
2 /1 _¢ 2¢
At the natural frequency:
|H(0,)| = il—CzQ, (3.16)

where Q is called the amplification factor.

3.3.2 Modal Structural Damping

The equation of motion of the sdof system with modal structural damping is

5(1) + on(1+jg)x(1) = f(1).
The frequency response of x(f) is X(jw),

(3.17)
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where
1

[1-(5)

The modulus of the FRF H(jw) is

e Hm) = is the frequency response function (FRF)

|H(w)| = 1 . (3.18)

[T+

The maximum value of |H(w)| is reached at the natural frequency ®,,

|H(w,)| = 1.
8

At the natural frequency the absolute value of the FRF becomes

|H(w,)| = é =0. (3.19)

3.3.3 Discussion of Modal Damping

For harmonic oscillations the damping force f;, is

e for modal viscous damping _fo |- ZC(Q)
2 ®
o, X(o) n
e for modal structural damping _fo_ |- g
(oiX(m)

At the natural frequency ®, the damping forces are equal to each other.

Below the natural frequency the modal viscous damping force is lower than
the damping force due to structural damping, however, beyond the natural
frequency the viscous damping force is greater than the structural damping
force.
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3.4 Method of Determining Damping from
Measurements
3.4.1 The Half-Power Point Method

For the half-power method the modal viscous damping is estimated by
measuring the frequency increment Ao at the half-power points (i.e. where

the response R is equal to R = —= = 9 . The modal viscous dampin
p q 5 ﬁ) ping §
is
_ Aw
C= g (3.20)

n

In (3.20) the value of the modal viscous damping must be {<0.1, [Car-
rington 75] (see Fig. 3.1).
Equation (3.20) can be very easily proved because

GO = 1 -L2.- 0 (3.21)
/ 1—(&)2}2+(2c£)2] 2 228
Then with
(%)2 ~1-2¢ and (%2)2 ~1+28, (3.22)
we get
(%)2_(%)2?0_‘: =%, (3.23)
with
Ao = 0,- 0. (3.29)

To measure the damping ratio { with the aid of the half-power method the
response peaks at the resonance frequency must be well separated. Damp-

ing may be measured or derived from a modal survey test!, however, modal

1. A modal survey test is a test that identifies a set of modal properties of a mechanical sys-
tem.
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survey is beyond the scope of this book. Readers who are interested in
modal survey are advised to read [Ewins 00, Maia 97].

Response

Fig. 3.1. Half-power method

3.5 Problems

3.5.1 Problem 1

Define the critical damping and damping ratio of the single degree of free-
dom dynamic system as illustrated in Fig. 3.2. The bar rotates about the
support at point A. The only degree of freedom is the angle of rotation ¢.

1. Set up the equation of motion @(k, m,c,L) = 0.
2. Define the natural frequency o, .

3. Define the critical damping ¢ .
4.

Define the damping ratio {, the equation of motion is then

(]S+2§mn¢+a)§(p =0.
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4L
L L L

SR LR T

Fig. 3.2. Single degree of freedom dynamic system

Answers:

1. i;i+—(b+§— =0

3.5.2 Problem 2

The damper in the single degree of freedom dynamic system, as illustrated
Fig. 3.2, is deleted. The structural damping g is proportional to the stiffness
k.

1. Define the undamped equation of motion @(k, m,L) = 0.

2. Introduce the structural damping in the equation of motion.

3. Assume a periodic motion ¢/** . Derive the expression for the structural

damping in the damper c, g(c, m, k, ®) .
Answers:

~ Sk
1. (p+§r—n(p_0

2. $+oX(l+jg)p =0




4 Multi-Degrees of Freedom
Linear Dynamic Systems

4.1 Introduction

A number of coupled linear sdof systems form a linear dynamic system
with more degrees of freedom, the so-called multi-degrees of freedom sys-
tem (mdof). Such a dynamic system is often called a discrete dynamic sys-
tem with n discrete masses coupled with springs and dampers. We talk
about a dynamic system with n degrees of freedom (dofs).

Continuous dynamic systems may be transferred to an mdof discrete sys-
tem using generalised coordinates.

The application of the finite element method to continuous structures
will result in a discrete mdof system where node displacements and rota-
tions are the discrete unknowns.

In this chapter the derivation of the equations of motion of an mdof
dynamic system will be discussed. In general, the equations of motion of a
discrete dynamic system can be written as

MH{x()} + [CUH{x(D} + [K{x(1)} = {F(1)}, 4.1)
and consists of the following matrices and vectors:
e the mass matrix [M]
o the stiffness matrix [K]
e the damping matrix [C]
e the force vector {F(¢)}
e the displacement, velocity and acceleration vectors {x(¢)}, {x(¢)}and

{x()}

For linear mdof systems the mass matrix, stiffness and damping matrix
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do not vary with time, however, the displacement, velocity, acceleration
and force vector do usually change with time.

4.2 Derivation of the Equations of Motion

The equations of motion of mdof dynamic systems can be derived applying,
amongst others, Newton’ law, differentiation of energies and work and the
Lagrange’s equations [Meirovitch 70]. The mentioned methods will be used
to derive the equations of motion for a simple 3-dof discrete dynamic sys-
tem (Fig. 4.1). No damping is taken into account.

Fig. 4.1. 3-dof discrete linear dynamic system

4.2.1 Undamped Equations of Motion with Newton’s Law

We will assume for the displacements, the following relations:
® (x;—x,)20
® (x;—-x3)20

® (x,—x3)20

F
k13(x1-x3)l \|/k12(x1"x2) T k23(X2-X3)

X1 /]\ mpy %) T my; X3T ms3

l ki1xy k12(x1-x7) k13(x1-x3)T Tkl2(xl'x2)

Fig. 4.2. Free-body diagrams
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The spring force F (N) is equal to the spring constant k (N/m) multiplied
by the difference in displacement Ax (m) between the discrete masses,
F = kAx.

The free-body diagrams are illustrated in Fig. 4.2.
The equations of motion per discrete mass (Newton’s law) are then as
follows:

m“k.l = —k13(x, —X3)—k12(x1 —X2)—k11x1 (4.2)
mpxy = Fy+kpy(x; — x5)—kp3(x; — x3) (4.3)
m33.k'3 = k13(.x1 ‘x3) + k23(X2 -x:,;) . (44)

Equations (4.2), (4.3) and (4.4) may be transferred into matrix notation

m; 0 0 X kiy+kip+kis =k —ky3 Xy 0
0 my, 0 X [t —kyy kigtkyy —kyy X (=3 F 4.5)
0 0 my % —ky3 —ky3 k3t kysl| x5 0
or
[M){x} +[K]{x} = {F}. (4.6)

The mass matrix [M] and the stiffness matrix [K] are symmetric. This can
be easily proven. The general expressions for the kinetic energy 7 and the
potential (strain) energy U of a linear system are

T = %mijfc,-ij , summed over i,j=1,2.... (Einstein convention) 4.7
U= %kijxixj, summed over i,j=1,2,... . 4.8)

Equations (4.7) and (4.8) may be written in matrix notation, the kinetic
energy in the mdof system is

T = i M, 49)
and the potential energy is
U= %{x}T[K]{x}. (4.10)

The second derivative of a function has a symmetric property
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2 2
? T- =my; = 8 T- =My, (4.11)
0x;0x; J 0x;0x; J
and
’u ., U
axax, 0 axax, - i 4.12)
thus
[(M] = (M), [K] = [K]". @.13)

The reciprocity properties can also be proved using (4.9) and (4.10). The
transposition of a scalar quantity is equal to the scalar quantity.

1, . T 1. . 1,. )
T = S(RY MR = S M3} = 543 IMIG)
The same applies for the potential energy.
The work done by the external forces can be expressed as

W = Fx;, summed over i=1,2,...., (4.14)
hence
F; = 8_W (4.15)
ox;

4.2.2 Undamped Equations of Motion using Energies

The undamped equations of motion for the linear dynamic system, as
shown in Fig. 4.1 will be derived using the kinetic and potential energies
and the work done by the forces.

The kinetic energy T of the discrete linear dynamic system is

1 .2 .2 .2
T = i[m“xl + Myx2 + mazx3], (4.16)
and the potential energy U of the linear system is
1 2 2 2 2

and the work W done by the forces becomes

W = F2.X'2. (418)

For the mass matrix [M], the elements r;z,-,- become
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. 2 . 2 . 2
® my = ?T. =my, mp = ?T‘ =0andm13= (:)T' =0
ax18x1 8x18x2 aX1aX3
. 2 . 2 . 2
& my = (?T. =0, my = ?T. = my, and my3 = i.)T. =0
0x70x] 0x20x2 0x20x3
. 2 . 2 . 2
® m3 = ‘8T. =0, myp = .aT. =0 and ms3 = .aT. = my;,
ax38x1 8x38x2 a)C3aX3
for the stiffness matrix [K], the elements I~c,-,~ become
- U - U
o ki = Sxox, " kyy+k,+ky, ki = %%, —k,, and
- U
ki = 0x,0x; = ki3
- o'U - ’U
[ ] k = = —k k = =
2 0x,0x, 120 "2 0x,0x, ki + Ky and
- ’U
ko3 = = -k
2 7 9x,0x, 13
- ’U - o’U
[ ] k = — = -—k s k = — = _k
3T 9x,0x, 13> 32 7 9xj0x, 5 and
- ’U
ky; = = k
33 0x,0x3 ki + kas

and the force vector [F], the elements },- become

. — a —

[ ] fl = axl = 0
~ oW

L] 7 = 5x_2 = F2
. — a— —

[ ] 3 = ax3 =0

We have achieved equations of motion similar to (4.5).

4.2.3 Undamped Equations of Motion using Lagrange’s Equations

The equation of motion of the mdof dynamic system, as illustrated in
Fig. 4.1, can also be derived by Lagranges equations. Lagrange’s
equations; without.dampingsare.as-follows [Gatti 99, Meirovitch 70]
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0 = W (4.19)
with
* 1 the i-th (generalised) coordinate, degree of freedom
e L(n,m) Lagrangian of the dynamic system, L = T-U
e T(n,7n) kinetic energy of dynamic system

e U(n,m) potential or strain energy of the dynamic system

W

e 0 the i-th (generalised) force, W = Q;0n;, Q; = 5n

o W virtual work of external forces

The scalar function L = T-U determines the entire dynamics of the

given system. The kinetic energy T of the mdof dynamic system is given
by (4.16)

1 . .2 .2
T = i[m“x% + MmoyrX2 + m33JC3] N
and the potential energy U by (4.17)
1
U= é[kll('xl)z +kip(x; —x2)2 +ky3(x) _x3)2 +ky3(xy —x3)2] .

The derivation of the undamped equations of motion is as follows

doL _ . L __ ) ]

[ dta)'“ = m”xl, axl = {k“x1+k12(x, x2)+k13(x1 X3)}
d oL . oL

. diys, = MmyX2, o, - —{—kyp(x; = x;) + ky3(x = x3) }
doL _ . 9L _

b dty, = m33x3, ax; {=k13(xy —x3)—ko3(x; —x3) }

® 8W=Fdx,,0 =0;=0and Q, = F,
Finally the derived equations of motion are equal to (4.5).

my 0 0[] x kiy+kp+ks —kp —k3 Xy 0
0 my 0y x5t —kip kip+ky —ky (=1 F
0 0 myl| x —ky3 —ky3  kizt+ky| x; 0

or in the general matrix notation
[M1{x} +[Kl{x} = {F}.
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4.2.4 Damped Equations of Motion using Lagrange’s Equations

The damped equations of motion of the mdof dynamic system may also be
derived from Lagrange’s equations. Lagrange’s equation with damping is
the same as (4.19), [Gatti 99, Meirovitch 70]

dJdL JdL oD

—_——t— = .,i=1,2, ...... s 4'20
drgn; oM Jn; Q; (4.20)

with
e D(n;) Viscous damping energy, D = %Cijﬁiﬁj, summed indices. The

damping terms are symmetric ¢; = ¢ because

ij ji®

The damping force is proportional to the (relative) velocity. The damping
force F, (N) is equal to the damping constant ¢ (Ns/m) multiplied by the

difference in velocity Ax (m/s) between the discrete masses, Fj, = cAx.

Fig. 4.3. 3-dof dynamic system with 2 discrete dampers

The damping energy of the dynamic mdof system, as shown in Fig. 4.3,
becomes

D= %[cll(i1)2+cl3(i1—fc3)2]. 421)

The derivation of the damping terms in the damped equations of motion is
as follows

L4 a_‘D— = C“x'1+C13()&1—JE3), a_D = 0 and a_D' = —(.‘13().61—-2.13)
oxi X2 dx3
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Thus the equation of damped motion becomes

my; 0 01| x ¢ +cp3 0 —cp5l| x1
0 my O 5+ 0 0 0%
0 0 myl| i, ~ci 0 el 1
ki +kp+kis —kp —ky3 Xy 0
+ —k13 kip+ky —ky |y X (=) Fy g
—ky3 —ky3 ki3 +ky) [ X3 0

or in the general matrix notation

[M1{x} +[Cl{x} +[K]{x} = {F}

In the following example we will generate the equations of motion of an
mdof dynamic system composed of a continuous elastic structure — a canti-
levered bending beam- and two discrete elements; a mass—spring system
and a viscous damper. The elastic behaviour of the beam will be translated
with the aid of an “assumed mode” multiplied by a generalised coordinate.

The dynamic system is shown in Fig. 4.4. The bending beam is clamped
at point A and has a bending stiffness EI (Nm?), a length L (m) and a mass
per unit length m (kg/m). The damper has a damping constant ¢ (Ns/m)
and is connected between the base and point B of the beam. The spring with
a spring stiffness £ (N/m) is connected between the discrete mass M (kg)
and point B of the beam.

We split the deflection w(x, #) in an assumed mode ¢(x) and a general-
ised coordinate 1(z), hence

w(x, 1) = o(x)n(7). (4.22)

The whole system will be excited by enforced base acceleration u(t) (m/

s?). The displacement &(z) of the discrete mass M with respect to the base
is (relative motion).

The assumed mode ¢(x) will be calculated from a clamped beam loaded
with a unit-point load at point B (see Fig. 4.5).
The bending moment at x is

M(x) = —(L-x). 4.23)
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M
/‘\ (1)
=

u(t)
base

Fig. 4.4. Mdof dynamic system with bending beam, mass—spring and damper

w(x) F=1
A El | J
L B
m F=1
C B
X L-x

Fig. 4.5. Clamped beam loaded with unit load

The deflection w(x) is related to the bending moment M(x) [Wempner 95]

Coy - M(x)
w (k) = - Bl (4.24)
with
e E  the modulus of elasticity (Young’s modulus) (Pa, N/m 2)
o ] the second moment of area (m4)
The boundary conditions at point A are
w'(0) = 0 and w(0) = 0. (4.25)
The solution of (4.24) with (4.25) is
ERTIEEIN
w(x) = EI(ZLx &~ ) (4.26)

e-d(x) we select
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o(x) = 3(%)2-(%)3. 4.27)

The strain energy per unit of volume is given by

dUu = %obendingsdv (4.28)

For a bending beam the strain energy U becomes

L 2 L. 2
_lJ' MMz, L[ [ M2 M
U = 5] OrenangedV = 5| TH4V =3 = dAdx = 5 OEIdx’ (4.29)
\4
where
° 7 the fibre distance (m)
° the coordinate in the longitudinal direction of the beam (m)

the length of the beam (m)
the cross section of the beam (m2)

B> o=

[ ]
Equation (4.29) can be written as
1M, 1f
- il - (g 2
U= 2_[0 Todx = 2J.OEIW (x)dx. (4.30)

The displacement w(x, ¢) of the beam at point B (x = L) is

w(L, 1) = ¢(L)n() = 2n(?). (4.31)

We assume that w(L, t) - 8(¢) >0 . The damped equations of motion will be
generated using (4.20).

The total strain U or potential energy of dynamic system, as shown in
Fig. 4.4, becomes

L
- %EIIO w 2x, f)dx + %k[w(L, =811, (4.32)
or, using (4.1), the strain energy will be
L
U = 3EM’ (0] ¢ s+ SN0 -3 (4.33)
0

The kinetic energy T is similar to the strain energy, however, we must
take into account the base velocity u, thus
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T= %m J:[wz(x, £)+ul dx + %M[S(t) val’, (4.34)
or
- %mf[(b(x)ﬁ(t) +uldc+ %M[s(t) vl (4.35)
0
The damping energy D is

D= %cwz(L, 1 = %c[q)(L)f](t)]z. (4.36)

We are now able to set up the damped equations of motion for the
unknowns n(¢) and 3(¢) . The procedure is as follows:

L L L
. %g—é =m j [OC)R() + i10(x)dx = ﬁ(:)mj0¢2(x)dx+mﬁj'o¢(x)dx
dodL
. o o = M&(t) + Mu
L
dL _ o(T-U) _ , 2 2
e n(r)E1j0<|> (¥)dx + (kO (L) - kO(L)3(1)
aL a(T U)
2L - D) - snk-kown()
oD oD
—_— = 0 — = L t
s 55052 Wi

The damped equations of motion are

mjcb(x)dxo fi(r) +[c¢(L) 0] ()

0 8(1) 0 O] &

L
E1j¢ {x)dx + ko (L) —k¢(L){g(t)} - m_[0¢(X)dx i, (437)
(1)
—k¢(L)

When substituting (4.27) into (4.37) the equations of motion become
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33 . : L2ET gr ok 3
semL o} n() +[2c0} LICR O {n(f)}=_ Ak i,
M

35
0o M 8(1) 00 0 ok f (1)

This equation is similar to (4.1).

[MI{x(1)} + [CH{x()} + [KN{x()} = {F(D)}

4.3 Finite Element Method

The finite element method will give us the damped or undamped equations
of motion [amongst many textbooks see Cook 89, Przemieniecki 85]. The
structural system will be divided into nodes (grids) connected with each
other with the so-called finite elements; springs, rods, beams, membranes,
plate bending, volumes, etc. In general, a node represents 6 degrees of free-
dom; 3 translations and 3 rotations. For every finite element a mass, damp-
ing and stiffness matrix and external load vector will be generated. All the
matrices are assembled in the overall mass matrix [M], the overall damping
matrix [C], the overall stiffness matrix [K] and overall load vector {F(¢)}.

The dofs of the nodes form, in fact, the displacement vector {x(#)}, the

velocity vector {x(¢)} and the acceleration vector {x(¢)} . Together we will
get (4.1)

[MI{x(1)} + [CH{x(D} + [KH{x(1)} = {F(1)}.

Later in this book the availability of the equations of motion is considered
to be more or less trivial.

4.4 Problems

4.4.1 Problem 1

The mdof system, as shown in Fig. 4.6, consists of 5 degrees of freedom.
Derive the equations of motion using

e the equations of equilibrium (Newton’s law)

e Lagrange’s equations
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4.4.2 Problem 2

A dynamic system, as shown in Fig. 4.7, has 3 dofs; w, ¢ and 3. The dis-
placement § is with respect to line A—B. Both dofs w and ¢ are located in
the middle of A-B. The structure in between A and B is rigid and has a
mass m per unit length (kg/m). The discrete mass M (kg) is coupled at the
end of the massless elastic beam with a bending stiffness EI (Nm?). The
beam is rigidly connected at point B. The complete dynamic system is sup-
ported by two springs with a spring stiffness k (N/m). The second moment
of mass of the rigid beam A-B I = émL? (kgm2).

e Set up the undamped equations of motion (e.g. using Lagrange’s equa-

tions).

Answer: The homogeneous equations of motion are

1
mL,+M M(511+L2) M 2% 0 0
. . 2 Y1 olokL, of| v 0
et - ot -~ + =
M(211+L2)1+M(211+L2) M(211+L2) (0] 0 o 3gr] @ 0
5| |00 atel o
M M(111+L) M 2
(. 2 2 -

I

Fig. 4.6. Mdof dynamic system
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EIl
© -

Fig. 4.7. Dynamic system with 3 dofs




5 Modal Analysis

5.1 Introduction

For structures exposed to dynamic forces the knowledge of the dynamic
characteristics of these structures is of great importance. The most impor-
tant intrinsic dynamic (modal) characteristics of linear dynamic systems
are:

o The natural frequency

e The associated mode shape

e Damping

The natural frequencies and associated mode shapes may be analysed for
both undamped and damped linear dynamic systems. In the case of damped
systems we talk about damped natural frequencies and associated damped
mode shapes.

In this chapter undamped and damped natural frequencies and corre-
sponding mode shapes will be defined and related important properties will
be discussed.

5.2 Undamped Linear Dynamic Systems

The modal characteristics of an undamped linear dynamic system are:
¢ The natural frequencies

The associated mode shapes

Orthogonality relations of modes (normal modes)

Rigid body modes

Left eigenvectors
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5.2.1 Natural Frequencies and Mode Shapes

The undamped equations of motion of a linear dynamic system (structure)
are

[M){x} + [K]{x} = {F(D)}, (5.1)
where
o [M] the mass matrix, either diagonal or consistent with the stiffness
matrix
e [K] the stiffness matrix
o {F(t)} the external (enforced) forces
o {x} the displacement vector with n degrees of freedom
o [x} the acceleration vector

For the calculation of the natural frequencies only the homogeneous
equations of motion are needed, thus {F(¢)} = {0}. We assume a har-
monic solution for the displacement vector and the vector of accelerations

{x} = {X(0)}", (5.2)
with
e {X(w)} the amplitude (dependent of ® ) rotating vector in the complex
plane with an angular velocity o

o a rotating unit vector with the angular speed o in the complex
plane with the Euler’s formula [ Nahin 98, Spiegel 64] is

¢ = cos(wt) +jsin(wr) and j = J~1.

Substituting (5.2) into equation (5.1) the homogeneous equations of motion
become

([K]-0’[MD{X(®)} = ([KI-MM]){X(w)} = {0}. (5.3)

Equation (5.3) has a trivial solution {X(®w)} = {0} in which we are not
interested. Equation (5.3) has a non trivial solution ({X(w)}# {0} ) only if
[Strang 88]

det([K]-A[M]) = 0. 5.4)

Solution of the eigenvalue problem will result in

. . W, .
1. The eigenvalues Ay, k = 1,2, ..,n with A, = o,”. In general, f, = 2—1’; is

the so-called natural frequency (Hz).
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2. Associated with the eigenvalues (natural frequencies) the eigenvectors
[X] are calculated. [®@] = [X]{a}is called the modal matrix. This
means that the mode shapes are scaled because the eigenvectors are
defined with respect to an arbitrarily figure o.. The modal matrix does
obey orthogonality relations.

If the mass matrix and stiffness matrix are symmetric, det[K] >0 and
det[M] >0, then the eigenvalues are real and A, >0.
The undamped equations of motion are
[M]{x} +[K]{x} = {F}.
Assuming [M]™" does exist these equations can also be written as
{¥} + M1 [KI{x} = [MT{F}.
Rearranging previous equations
{¥} = ~[M1"'[K]{x} + [M]"{F},
or

{#} = [ANx} +M]{F}. (5.5)
The eigenvalue problem is:
AII{X} = [AHX}. (5.6)

The solution of equations of motion can be constituted from the solution
of the homogeneous differential equation complemented with a particular
solution. The solution of the homogeneous part can be constructed from the
eigenvalues and the associated eigenvectors. The solution becomes [Strang
88]

{x} = i(ciejw"+Die"’°’f'){X(x,.)}, (5.7)
. i-1
{x} = i(A,-cosu)it+B,-sin(x)it){X(Ki)}, (5.8)
with B

e A, B, C and D integration constants.
* n the number of dofs.
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the radian natural frequency (rad/s) with ®; = J)T, Here the rela-
tion of the natural frequencies of the dynamic system and the
eigenvalues appears.

e {X(A;)} the eigenvector associated with the eigenvalue 2, .

°

The integration constants can be obtained using the initial conditions for
the displacements and velocities at + = 0. The initial displacements will
solve the A constants and the initial velocities the B constants. The com-
plete solution of the displacement vector {x(¢)} becomes

{x(0} = Y (Acos ot + Bisino) {X(A)} +pun (1) (5.9)
i=1
where
® Xx,.(t) is the particular solution of (5.5), also called the steady-state
solution.

A linear dynamic system is defined by the following equations of motion

100]/| x1 20 =20 0 || * 0
020[) x, (*+]-20 50 =30[y x, (=10 (>220,
003]| ;, 0 -30 70| x, 0

or

[M1{x} +[K]{x} = {F}.

At ¢t = 0 the initial displacement u, and initial velocities v, are

1 1
u, =490 candv, =4 o
0 0
The eigenvalues and the associated eigenvectors are
43360 O 0 20823 0 0
M=1 0 2198 0 [-(®=| 0 46828 0
0 0  42.0688 0 0 6.4860

and the matrix with the eigenvectors
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0.7488 -0.8219 0.6245
[X] = 10.5865 0.0793 —0.6891] -
0.3087 0.5641 0.3678

The A integration constants are calculated using the initial displacements
u, at t = 0 and the integration constants B are calculated with the aid of

the initial velocities v, at ¢ = 0.

The A integration constants are obtained using (5.8)

0.4880
[XI{A} = {u,} > {A} = (X)IXD)" X1 {u,} = { _0.5003
0.3578

The B integration constants are obtained using (5.8)

0.2343
XI(){B} = {v,} > {B} = (IXI"IXI{w))  X17{v.} = { _0.1068
0.0552

Finally the complete solution for {x(#)} becomes

0.7488
{x(#)} = {0.4880c0s(2.0823¢) + 0.23435in(2.08231) H{ 0.5865

0.3087

0.8219
+ {—0.5003 cos(4.6828¢)—0.1068sin(4.68281)}{ 0.0793

0.5641

0.6245
+{0.3578c0s(6.4860¢) + 0.0552sin(6.4860¢) 4 _0.6891

0.3678

5.2.2 Orthogonality Relations of Modes

The eigenvalue problem is stated as
(-MIMT+[KD{o;} = {0} (5.10)
with
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e [0;} thei-th eigenvector or mode shape
e ), thei-theigenvalue

Premultiplying (5.10) with the transposposition of {¢,} the following equa-
tion is obtained

{037 (= (M1 + [KD){0;} = {0}. (5.11)

The same equation, as (5.11), will appear if the indices of the mode shapes
will interchanged

{0} (=L [M) + [KD){0;} = {0}. (5.12)
The mass matrix [M] and the stiffness matrix [K] are symmetric thus
{0, ML, = 10,1 IMIT0. 1= {0:} [MI{9;}, (5.13)
and also
({0 TIKHOH = {0} IKI{0,}= {0,}T[KI{0,}. (5.14)

The mass matrix is positive-definite when {¢i}T[M]{¢j}>O and the

stiffness matrix is positive-definite if {¢,.}T[K]{¢j} >0, when the mode

shapes are not zero vectors. Subtracting (5.12) from (5.11) the following
equation is obtained

(A= A){0,} [M1{0;} = {0}. (5.15)
There are two possible solution

L. (&= #0 then {¢;} [MI{¢;} = 0 and {;} [KI{¢;} = 0
2. (h=2)= 0 then {0,} [M1{¢;} #0 and {6,}" [K1{¢,}#0

In general, the mode shapes are scaled such that the product
{0} IMI{0,}= 3, (5.16)
and from (5.11) and (5.12) one can prove
{0 IKI{;}= A3, (5.17)

with
e 5, the Kroneckerdelta i= j then 6, = | andif i#;j then §; = 0.
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Sometimes, the eigenvalues are repeated and then the eigenvalue prob-
lem results in multiple eigenvalues. This complicates the calculation of the
modes. A discussion on multiple eigenvalues is given in [Newland 89].

The modal matrix [®] = [¢,, ¢y, ......,$,] has the following orthogonality

properties with respect to the mass matrix and the stiffness matrix

[®]"[M][®] = [I] and [®)[K][®] = (A), (5.18)

e [I] the identity matrix
e (L) the diagonal matrix of the eigenvalues

The modes are orthogonal (orthonormal if [(D]T[M][cb] = [I]) with
respect to the mass and stiffness matrices. The modes with the orthogonal-
ity relations are often termed normal modes. In later chapters the orthogo-
nality relations of modes are used to decouple the coupled equations of
motion by depicting the physical displacements, velocities and accelera-
tions on an orthogonal base of modes, the so-called modal matrix. The
method to solve the equations of motions of a linear dynamical system
decoupling the coupled equations is called the modal displacement method
(MDM)

A linear dynamic system is defined with the following equations of
motion

100[| x1 20 20 0 || % 0
020[3 %, (*]-20 50 =30]3 x, =10
003]| 0 -30 70]| x, 0

The eigenvalues {A} and associated mode shapes of the undamped dynamic
system are

4.3360 _ 0.7488 —0.8219 0.6245
{A} =14 21.9285 ¢ and [®] = [0.5865 0.0793 —0.6891|-
42.0688 0.3087 0.5641 0.3678

The generalised mass matrix [m]= [E)]T[M][E)] becomes

15346 O 0
[m] = 0 16428 O
0 0 1.7453
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We normalise the modal matrix [®]such that [CD]T[M][(D] = [I] with

[®] = J[m] ' [®], thus

) 100 . 43360 0 0
[®]' [M][®] = |0 10| and [®][K][®] =| 0 219285 O
001 0 0  42.0688

5.2.3 Rigid-Body Modes

If the linear dynamic system is not constrained the system can move as a
rigid body. This means that during the movement as a rigid body no elastic
forces will occur in the dynamic system. If this is the case the stiffness
matrix [K]is singular (semi-positive-definite). In general, there are 6 pos-
sible motions as rigid-body; three translations and three rotations. This
implies six eigenvalues A, = 0,k = 1,2,...,6 of the eigenvalues problem

(- MM+ [KD{¢;} = {0} [Zurmuehl 64]. If so one can write

[K{¢g } = {0}, k=1,2,...6 (5.19)

Again it is noticed that no elastic energy will be introduced in the dynamic
system. The rigid-body mode energy is defined with

200} IKI{0g i} = {0}, & = 1,2,..,6. (5.20)

This illustrates that in this case the stiffness matrix is not positive-definite,
but semipositive-definite. The six rigid-body modes can be calculated very
easily from (5.19). The free-free dynamical system (with n degrees of free-
dom) is constrained at one point with 6 degrees of freedom; three transla-
tions and three rotations. The set of degrees of freedom is called the R-set.
The other elastic degrees of freedom are placed in the E-set, such that
n = R+ E. The constrained R-set is determinate, so no strains will be intro-
duced in the elastic system. The R-set consists of 6 unit displacement and
rotations and those will be enforced to the dynamic system. Equation (5.19)

can be written
te ol 0 f o] s
Kre Krg 1 0

with

o []] the identity matrix
e [®; ;] the E-set part of the rigid-body motion
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From the first equation of (5.21) the E-set part of the rigid-body mode can
be solved

(@ 2] = ~[Kgp] ' [Kig)- (5.22)

The complete matrix of the 6 rigid body modes becomes

[@g] = [_[KEE]_I[KER]:!. (5.23)
I

If the (5.23) is substituted into (5.21) the second equation reads

[Krr]= [Kpgl-[Kpel[Kgp] ' [Kgq] = [0]. (5.24)
Equation (5.24) tells us that the reduced stiffness matrix reduced to the

redundant R-set degrees of freedom will vanish. The reduced matrix [I_(RR]
is very familiar to the static condensation technique, [Guyan 68].

A launch vehicle is modelled as an unconstrained bar consisting of two
truss elements with in total three degrees of freedom [Przemieniecki 85].
No external forces are applied.

L L
2EA,m 2EA,m
0 0) 0
—> —x —N

Fig. 5.1. Unconstrained bar consisting of two truss finite elements

The mass matrix [M] and the stiffness matrix [K] of a truss element are

(M) = "E12 Y and (k7 = 2AE| 1 -1}
6112 L -1 1

The equations of motion of the launch vehicle are

x - x '

”_I—LZIO "1 2A_El 10 1 ) 0
6 141 X2 +L -1 2 -1 Xy =30
012]| ; 0-11]|x] |0

The eigenvalue problem becomes
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— X
mt|21Y pag| LT O[]0
6 1 1+L "'12—1 X2 - 0
012 0-11 X3 0
o210 a1 -1 0
detl == 14 1|+ |-1 2 -1[=0
012 0-11
2
.2 _ AmL . .
With «¥° = ToAE the determinant is

(1-2¢%) —(1+2¢%) 0
det| (1 4+2x?%) 2(1-2¢%) (1 +2KH)| = 0-
0 —(1+2¢%) (1-2¢H

On expanding the determinant the following characteristic equation is
obtained

6x%(1-2x%)(x*=2) = 0.
The solution of the characteristics equation are three roots (eigenvalues)

1. K12=0, }\41-:0,(01:0

2. K22=%,A‘2=6L12,(02= '6-2—2
mL mL
m mL

The associated modes are

111
[®] =110 -1f-
1-11
The generalised mass matrix [m]= [®]'[M][®], generalised stiffness
matrix [k]= [®]'[K][®] and (A)= [m]'[k] are
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1200 000
mL _ 2AE
[m]=? 0 40| and [k] = 7 1020 and

004 0038

000

- 12AE
(W= [m]"'[k] = 20050/
o 0 2

The calculation of the rigid-body mode [®,] can be done using (5.23),
with the displacement x, placed in the R-set and the displacements x, and
x; placed in the E-set. After partitioning of the matrix [k] we obtain

2AE _24E[2 41 _24E[-1
[Kgrrl= —L—[l] s, [Kggl= TLI lil , [Kerl= T[O] , and
2AE
[Kggl= T -1 O:I

The rigid-body mode becomes

_ 1
(@,] = |-[Keel [Kgl| = ||
1 1

The rigid-body mode may be either extracted from the eigenvalue prob-
lem or calculated partitioning the stiffness matrix in E-set and R-set subma-
trices. Using the geometric information of the nodes with coordinates (x,y,z)
there is a third way to calculate the rigid-body mode. The geometric matrix
of a node is obtained by translations along the x-, y- and z-axis and rota-
tions about the x-, y- and z-axis. The geometric matrix is given by (see
Fig. 5.2)

u 1000 z -y
v 010-z 0 x||Y
w 001 x -y O Wol (5.25)
o, 0001 0 O]|o,,
o, 000010 Oy0
9| (0000 0 1]

In fact, the geometric matrix the motion of point A with respect to origin O.
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w (‘pz
Wo o A v o9,
9o | U
u, ¢,
%, O >t y
Qo ' 7
Vo 1,

Fig. 5.2. Geometric relations between displacements and rotations

The rigid-body mode is built up from the geometric matrices of all nodes
with respect to a certain origin of the coordinate system. There are six rigid-
body modes.

5.2.4 Left Eigenvectors

Left eigenvectors, which can be extracted from measured frequency
response functions of structures and systems convey important information
on their dynamic behaviour [Bucher 97]. In this section the left eigenvec-
tors are defined and the relation with right eigenvectors, the modes, will be

explained.
The general eigenvalue problem may be written as [Zurmuehl 64]
[Al{x} = A{x}. (5.26)
We now define a new eigenvalue problem
[A1{y} = Ay} (5.27)

The transposed version of (5.27) now becomes

(Y141 = My}, (5.28)
where
e {y} the eigenvector of the matrix a1
e {y} the left eigenvector of the matrix [A]

The eigenvalues A of the eigenvalue problems stated in (5.26) and (5.27)
are equal because [Zurmuehl 64] det(A -Al) = det(AT—M). Zuermuhl,
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[Zuermuhl 64], proved that in the case A;#A;the eigenvectors {x;}and
{y;} are orthogonal

{x}{y} = 0. (5.29)

The eigenvectors {x;} and {y;} may be scaled such that

{x} v} = 8, (5.30)

or

X111 = (1. (5.31)
with
® [X] = [x,xp....] and
o [Y] = [y, Yy o 1

The homogeneous equations of motion of an undamped dynamic system
are written as

[M1{x} + [K]{x} = {0},
and the eigenvalue problem with eigenvector {¢,} is

([K1-AIM]){¢;} = {0} (5.32)
(M1 TKD{0} = Mo} (5.33)
The left eigenvector {);} is, from the eigenvalue problem,
(M1 KD (%} = Mt (5.34)
or with a symmetric mass matrix [M] and symmetric stiffness matrix [K]
{0 (MY KD = My (5.35)
Equation (5.34) can be written as
(LKIMT ) {x} = My} (5.36)
Comparing (5.32) with (5.36) it can be shown that [Bucher 97]
{x:t = (M1{o;}, (5.37)

and when the left and right eigenvectors are properly scaled then
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{0, {1 = 8, (5.38)

with {0, [M1{0,} = 1.

5.3 Damped Linear Dynamic Systems

The dynamic characteristics of a damped mechanical dynamic system are:
e The state variables

The complex eigenvalues

The natural frequency

The modal damping

The complex eigenvectors

5.3.1 The State Vector

The damped equations of motion of a damped linear dynamic system are
generally written as

[M{x} +[Cl{x} +[KI{x} = {F(1)}, (5.39)
where
o [M] the mass matrix, either diagonal or consistent with the stiffness
matrix
e [C] the damping matrix
e [K] the stiffness matrix
e [F(t)} the external (enforced) forces
o Ix} the displacement vector with n degrees of freedom
o [x} the velocity vector
o [x} the acceleration vector

The damping forces are in this case proportional to the velocities.
A state vector is now introduced in which the displacements and veloci-
ties are combined

[y} = { * } (5.40)
X

The damped equations of motion can be expressed in the state matrices and
vectors
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Y D A Y A

If the mass matrix [M] is not singular (5.41) may be rewritten
[10:| il | o 11 {%}% lo } 542
01| x| |-M'k-m'c|l x M'F(1)

{y} = [AlY}+{F(n}. (5.43)
The (5.41) may be arranged in another way resulting in symmetric state

matrices
CM] X +[K0{x}={”’)}. (5.44)
mMol| ;| |oMml|x 0

The damped equations of motion of a linear dynamic system are

or as

050 0] x 0.05 —005 0 || x1 3 2 0| x 0
01 0[]y x (t|-005 01 —005 x, (¥|24 -2 x =11
0 01| ; 0 -005 0.1 ]| ;, 0 -2 3| x 0

The state vector is
l_yJ = I_xp x2, x39 x"ls .X.'Z, x3J b

and the matrices [A] and {F(¢)}become

0 0 01 0 0 0
0 0 00 1 0 0
ar=|0 0 0 0 0l g ry =4 O L
6 4 0-01 01 0 0
2 -4 2005 -01 005 1
0 133332 0 00333 -0.0667, 0
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5.3.2 Eigenvalue Problem
The damped equations of motion of (5.39) are transformed with the aid of
the state vector into (5.43)

{y} = [Al{y} +{F(n)},

where

o [A]=[ (11 I_lland
-M K-M C

. {fv(t)}={ N }
ME(n)

Assuming a solution of the state vector

At

v} = e (5.45)
and of the homogeneous equation
{»} = [A1{»}, (5.46)
the following eigenvalue problem is derived
([A]-AUI{y} = {0}, (547)

where
e A, the k-th complex eigenvalue and

o { ):} the associated complex eigenvector

If the linear dynamic system is under critically damped the eigenvalues
A occur in pairs, the complex eigenvalue A,and its conjugate complex

eigenvalue A,

Equation (5.48) is the analogue of a simple damper-mass-spring system.
The damping ratio &, and the natural frequency ®, can be calculated with

A+ A = 28,0, (5.49)
in combination with

Py (5.50)
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The damped equations of motion of a linear dynamic system are

050 0| %1 005 —005 0 || % 3 22 o] 1 0
01011 (+]|-005 0.1 -005|{ £, {+|-2 4 2|3 x, =11
0015 3 0 -005 01| ; 0 -2 3] x, 0

The eigenvalues of the eigenvalue problem ([A]—X[I]){;} = {0} are
(with j = J=1)

~0.0867+2.8536; | ~0.0867 — 2.8536;
—~0.0867 — 2.8536; —~0.0867+2.8536;

(A} ={ -00374+18005 | ang (A} = -00374-1.8005; |
~0.0374 — 1.8005; ~0.0093+0.7779;
~0.0093+0.7779; ~0.0093 - 0.7779;
| —0.0093-0.7779; | | -0.0093+0.7779j

The natural frequencies can be obtained from (5.50), A, A, = a)z

2.8549
2.8549
[} = | 1:8009

1.8009
0.6053

0.6053
L J

The modal damping ratio is calculated from (5.51), A, + A, = —2&,0,

0.0607
0.0607
[E,) = | 00415
0.0415
0.0239
0.0239

5.3.3 Eigenvectors

The complex eigenvectors { ):k} from the eigenvalue in problem (5.47)
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(A]- MLy} = {0}
are gathered in the matrix of eigenvectors [P].

The state vector {y} is now depicted on the matrix of eigenvectors [P]
{»} = [PI{n(}. (5.51)

Substituting (5.51) into (5.43) and multiplying that result by [P]”' the
matrix equation becomes

[} = [PT[AIIP){N} + [PT{F()}. (5.52)

From [Strang 88] the matrix of eigenvectors [P] will diagonalise the matrix
[A] such that

[P1'[AI[P] = (A). (5.53)
Finally, (5.52) becomes

(M} = Y} +PI{F0}. (5.54)
The solution of (5.54) is from [D’Souza 84]

in@} = [‘P(t—to)]{ﬂ(to)}+_[ [¥(-0IPT {F()}dt (5.55)

where
ex't 0 0
Ayt
o [¥Y(1)] = 0 e” ... 0
. . ... 0
0 0 ..e™

e n the number of degrees of freedom.

The initial conditions can be calculated using

(1)} = [P {y(ty)} - (5.56)

When the matrix of eigenvectors [P] is not complete the initial conditions
for the generalised coordinates are to be calculated by

(NG d-=LP PI P {y(ty)} . (5.57)
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The damped equations of motion of a linear dynamic system are

050
01
00

o]| x
0y x»
15

X3

0.05 -0.05
+1-0.05 0.1 -0.05
0 -0.05 0.1

Xy
X

x3

o *1 0
=21 % (T 1
3 X3 0

The eigenvectors of the eigenvalue problem ([A] - A[1]){ )A)} = {0} are

[P] =

0.1442+0.0591;

| 0.0412 - 0.0873;

0.1442 - 0.0591j
[P] = -0.0310-0.0135j -0.0310+0.0135j 0.1991 - 0.1551;

0.3170-0.7634j  0.3170+0.7634j

0.0412+0.0873j

.. 03221 -0.1878j 0.3221+0.1878;
.. 04324 -0.2567] 0.4324+0.2567
.. 0.4115-0.2484] 0.4115+0.2484j
.. 0.1431+40.2523j 0.1431-0.2523f
.. 0.1957+0.3388j 0.1957 —0.3388;

. 0.1894+0.3224j 0.1894 —0.3224;

0.2719+40.3643;

-0.2707 - 0.1029; -0.2707+0.1029; -0.2684+0.2111j -0.2684 —0.2111; . .
-0.1807+0.1507j —0.1807 - 0.1507; . .
0.199140.15515 ..
-0.3701 - 0.4911j -0.3701+0.4911j . .
—0.1813+0.4065j — 0.1813— 0.4065j —0.2646 - 0.3310j —0.2646+0.3310j . .
0.2719 - 0.3643j . ||

The matrix of eigenvectors [P] will diagonalise the matrix [A], (5.53),
[PY'[AI[P] = (A

-

(A =

(A =

The vector [P]_l{;’(‘t)} in (5.55) is

—0.0867 —2.8536/

0.0867+2.8536; 0
0
0 0
0 0
0 0
0 0
0
0
0
o 0
.. .. —0.0093+0.7779j
0

-0.0093 - 0.7779j}

~0.0374+1.8005/

S O O O

0

0
0

0
0
0

0

0

0 ..
—0.0374 - 1.8005; . .

0

0

91




92 5 Modal Analysis

~0.1410 - 0.3767j
~0.1410+0.3767;
(P (F(r)) = | —0.1888+0.2489j
~0.1888 — 0.2489j
0.2492 — 0.4140;
0.2492+0.4140;

5.4 Problems

5.4.1 Problem 1

The mdof system, as shown in Fig. 5.3, consists of 5 degrees of freedom.
1. Derive the equations of motion using

ethe equations of equilibrium (Newton’s law)
eLagrange’s equations

| " |

Fig. 5.3. Mdof dynamic system

The parameters have the following values;

the masses (kg), m;, =3, my =2, my=4, my=1 and ms = 4, the

4x10°,

spring stiffness (N/m), k, = 3x10°, k, = 2x10° , k, = 5x10°, k,
ks = 6x10°, ky = 6x10° and k, = 1x10°.
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2. Calculate the lowest natural frequency o, , and associated mode shape

{0,} such that {¢,} [M1{¢,} = 1.

Answer: ®, | = 123.4 rad/s

5.4.2 Problem 2

A damped dynamic system obeys the following characteristics:

e mass matrix [M] = 3.1486 -2.0419
-2.0419 1.4850

o stiffness matrix [K] = | 1192695 ~0.67.6742) . g
~0.67.6742 2543679

e 2 damping matrix[C] = | 03367 ~0.6538
~0.6538 2.2436

Questions
1. Calculate the undamped eigenvalues {A} (natural frequencies) and asso-
ciated modes [®].

2. Calculate [®] [M][®].

3. Scale the modal matrix [®] such that [®]'[M][®] = [I] and
[®1[KI[®] = (A).

4. Set up the matrix [A] = 01 11 .
-M ' K-M C
5. Solve the damped eigenvalue problem ([A] - 7»[1]){5:} = {0}.
6. Calculate the undamped natural frequencies {®,} and the modal damp-

ing ratios {&}.

7. Calculate [P]"'[A][P].




6 Natural Frequencies, an
Approximation

6.1 Introduction

Generally, when calculating the natural frequencies of complex dynamic
linear systems the finite element analysis method is applied. However, it is
good practice to first apply a method to approximately calculate the natural
frequency of that system to get a feel for the value of the natural frequency.
The system will be simplified as much as possible in order to be able to use
an approximate method. In this chapter the following methods, to quickly
obtain the value of the natural frequency, will be discussed:

e Static displacement method

. Rayleigh’s1 quotient [Temple 56]

¢ Dunkerley’s equation

The theory will be illustrated with examples.

6.2 Static Displacement Method

The natural frequency of an sdof system, as shown in Fig. 6.1, is given by

- Lk
A 6.1)
If a 1g acceleration is acting on the mass m (kg) the inertia force mg (N)
will compress the spring with a spring stiffness £ (N/m)] with a static dis-

placement x,,

1. Lord Rayleigh, whose given name was John William Strutt (1942-1919)]
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Ig
J/ m l
Xstat
k %

Fig. 6.1. Undamped sdof system

x., = 28 (6.2)

stat k

The static displacement xg, has the dimension (m). This means that we

can rewrite (6.1) as follows

= LJk_1 g
fo= 52 J; =5 /xsm- (6.3)

The approximation of the natural frequency, using the static displace-
ment method, is only applicable if the dynamic system has a dominant
lumped (discrete) mass with respect to the distributed mass.

If we calculate the static displacement A per 1 m/s? the approximation of
the natural frequency is

= Lk _ 11
f“_2m/;_2m/;' (6.4)

A spacecraft placed on a payload adapter is such a system. The mass of
the payload adapter is (much) less than the lumped mass of the spacecraft in
the centre of gravity (centre of mass). The static displacement of the centre
of gravity, due to the unit acceleration inertia loads, can be used to calculate
the natural frequencies of the spacecraft placed on the payload adapter.

Given a spacecraft with a total mass of M,, = 2500 kg. The centre of
gravity of the spacecraft is located at » = 1.5 m above the interface with
the conical payload adapter. The diameter at the top of the cone of the pay-
load adapter d = 1.2 m. The configuration of the spacecraft is shown in
Fig. 6.2. The diameter at the lower side is D = 3 m. The height of the cone
is H = 1.5 m. The cone had been made of CFRP with an isotropic Young’s
modulus E = 120 GPa and a Poisson’ ratio v = 0.3. The thickness of the
cone t = 5 mm.
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Y

Spacl:ecraft

Fig. 6.2. Spacecraft mounted on a conical payload adapter

Calculate the natural frequency, associated with the first bending mode in
the x—y plane, when the spacecraft has been placed on the conical payload
adapter that is clamped at the lower side of the cone. The spacecraft is very
well connected with the payload adapter and discontinuities do not exist.

In [Seide 72] the following influence coefficients can be found

-0 |k
6 = 2 4 A —2+(1+ﬁ)[1+(1+u)(sina)2] D,
nEt(sina)’ | _ 51 s9/L2
S
-3 1 M
32 Sl . 2
—2 1—(1+—)[—+(1+u)(sma)]} , (6.5)
nEt(sinoc)3{ 212 spcosa
and

Sy S1\['1 . 2
0 = - {1-(1 +—-)[—+(1 +0)(sino) ]}Ds
nEts,(sino) cosa $2/12

+ %2 {(1 + ﬁ)B +(1+ u)(sin(x)z}} M (6.6)

§ycos0”

.3
nEts (sino) cosal
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The shear force is D, = M, (N) and the bending moment M = M, h
(Nm). The total static displacement A (m), of the centre of gravity, due to
1m/s? acceleration in the x-direction is

A=0+h0
The natural frequency f,, corresponding to a bending mode shape in the x-

direction is
1 J1 1 1
fn = -——,\/: = — —_— = 3742HZ
2mNA T 2Mmy 1 8086510

In our calculations we have neglected the mass of the payload adapter. The
spacecraft on top of the payload adapter was assumed to be rigid. The influ-
ence of a flexible spacecraft on top of the flexible payload adapter can be
calculated using Dunkerley’s method.

6.3 Rayleigh’s Quotient
We define Rayleigh’s quotient as [Temple 56]
T
R(u) = _{_.IQM , 6.7)
{u} [M]{u}

where
e {u} an admissible vector (assumed mode shape) that fulfils the bound-
ary conditions

e [M] the positive-definite mass matrix, {u}T[M Hu}>0
e [K] the stiffness matrix

The minimum value of Rayleigh’s quotient R(x) can be found (stationary
value) when

OR(u) = 0. (6.8)
Thus

6R(u)=8{u}T2{ [K1{u} _{u}T[K]{u}[Ml{u}}ﬂ‘ 69)
{ IMIu} (M)’

In general, the  “kinetic  energy”  (generalised  mass)
{u}T[M]{u} #0 = m,, thus (6.9) can be rewritten as

[K1{u} = R(u)[M]{u} = 0. (6.10)
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Rayleigh’s quotient is analogous to the eigenvalue problem
([KT-AMMD{o} = 0. (6.11)
Rayleigh’s quotient R(u) is equal to the eigenvalue A only if {u} = {¢}.
We normalise the mode shapes [®] such that
[®1[M][®] = [I] and [®]"[K][®] = (M).
We can express the assumed vector {u} as follows
{u} = [®I{n}. (6.12)

Equation (6.7) can then be written

2
ik
T
O .8 L1 S — 6.13)
Wty
J
J

Assume the mode shape {¢,} is dominant with respect to the other mode
shapes, then m; = gmn; with ¢ «1. When {¢;} = {¢;} and (A;-24,)20
(6.13) becomes [Meirovitch 75]

Suh mik ety ek,

Ru) = - = ety + Y g-h) 2. (6.14)
2 2 2 2 !
Yni mitniy g jiti
J Jy#i

Rayleigh’s quotient R(u) will result in an upper bound value of the eigen-
value A, corresponding with the assumed mode shape {u} . Rayleigh’s quo-
tient is never below A, and never above A,, with n the numbers of dofs,
[Sprang 88].

A 1 g gravitational field is applied the masses of the system, shown in

Fig. 6.3. The static displacement vector {x} becomes
-1

Ao ]| 153
{xp =250 3 2 =0 08533
0-25 1 0.3333

We take as admissible vector {u}
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Fig. 6.3. 3 dofs sdof linear system

1.8533
tu} =1 08533
0.3333

Rayleigh’s quotient R(x) now becomes

T
R(u) = L IKIub _ g 400k
{u} [M{u} m

The theoretical lowest eigenvalue is A, = 0.41587 '%

Rayleigh’s quotient of a bending beam is defined as
L
| Erw Yax
R(u) = 20—, (6.15)
J mu’dx
0
with
EI  the bending stiffness of the beam (Nm?)
m  the mass per unit of length (kg/m)
u(x) the assumed mode
L the length of the beam (m)

For a beam, simply supported at both ends, we take the assumed mode u(x)

X X
= Xf1-%),
)
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R(u) = 1202L
mL

The theoretical value for the eigenvalue A, = otEL

mL4

6.4 Dunkerley’s Method

Dunkerley published his equation in 1894 [Brock 76].

The equation of Dunkerley is a method to estimate the lowest natural fre-
quency of a dynamic system, which is composed of substructures (compo-
nents) of which the lowest and lower natural frequencies are known. The
damping is not involved in the equation of Dunkerley. The equation of
Dunkerley will predict an accurate lowest natural frequency when this fre-
quency is rather shifted from the next natural frequencies.

The eigenvalue problem of an undamped dynamic system can be written
as

(- o’[M] + [K]){0} = {0}, (6.16)
with
e [M] the mass matrix.
e [K] the positive-definite stiffness matrix. The inverse of the stiffness

matrix, the flexibility matrix [G] = [K]_l exists.
e {0} the mode shape corresponding the natural frequency o >0.

We can rewrite (6.16) as follows

1
(Stn-te10m e} = 10 6.17)
)
The solution of the determinant of (6.17), with n dofs, can be formally
written as
SRS E WS Y (R 618)
(co2 (of o’ m§ o’ (ni ’
with —1—2, —15, % the solution, roots, of the characteristic equation
0 0, O

(%[I]—[G][M])' = 0. (6.19)
®
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The sum of the n eigenvalues of (6.19) equals the sum of the n diagonal
terms of the matrix [G][M] [Strang 88]. This sum is known as the trace of
[G1[M], thus

trace([G][M]) = igkkmkk = i('l—z) (6.20)

k=1 k=1 Ok

To estimate the lowest natural frequency ®, we may neglect the contri-
bution of the higher natural frequencies ®,, k=2,3,.....,n. This approxima-
tion becomes more and more accurate if o, «w,, k=2,3,..,n , then we
obtain Dunkerley’s equation

1 n
=< 2 kM - (6.21)
O o

The term g,,m,, may be interpreted as an sdof system with a discrete

mass m,, and a spring with spring stiffness g, , as shown in Fig. 6.4. The

natural frequency Lz of the equivalent sdof system is

O
1 My
— = &M = - (6.22)
Wi 8k

Thus Dunkerley’s equation, (6.21), becomes

n
Loy L. (6.23)
2
O T O

My
-1
8kk

Fig. 6.4. Equivalent sdof system in Dunkerley’s equation

We . consider.one discrete.mass.at.a time and neglect the other masses. We
calculate the flexibility term g,, for that discrete mass applying a unit load.
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The obtained displacement is, in fact, the flexibility g,, . We shall illustrate
that with an example.

We consider the dynamic system as shown in Fig. 6.3.

2k

Tl

3k

System 1 System 3 System 3

Fig. 6.5. Decomposition of the dynamic system in 3 systems

Equation (6.21) will be applied to calculate the lowest natural frequency of
the complete dynamic system. The dynamic system has been decomposed
in three systems; system 1, system 2 and system 3, as shown in Fig. 6.5.

Table 6.1. Example calculations Dunkerley’s equation

System # 8kk Mk
! t,1,1_n m
k 2k 3k 6k
2 1,1_5 m
2k 3k~ 6k
3 12 m
3k ~ 6k
3
zgkkmkk 3m 2 k
k=1 * o, = 0.3333’—1-1

The analysis procedure is illustrated in Table 6.1.
Suppose a dynamic system is built up of sdof’s on top of each other, as

H : J
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Fig. 6.6. n sdof dynamic systems

The diagonal terms g, k = 1,2, ..,n of the flexibility matrix [G] = [K]~l
([K]is a positive-definite matrix), can be written as follows

= =. 6.24
8k % (6.24)

Equation (6.21) becomes

n

n k n n
izs ngkmk = ka ]% = Z%ka (6.25)
Or o k /

=1 j=179 j=1"k=j

We will apply the alternative equation of Dunkerley to the dynamic sys-
tem shown in Fig. 6.5. Equation (6.25) will be applied to calculate the low-
est natural frequency of a complete dynamic system. The dynamic system
has been decomposed into three systems; system 1, system 2 and system 3,
as shown in Fig. 6.7.
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Table 6.2. Example calculations alternative Dunkerley’s equation

n

|—

System # n=3, j kj 2 m,
k=j

1 3 1 m
k

2 2 1 2m
2k

3 1 1 3m
3k

n 1 n

-yYm
Z{kfg} ) 3%" o = 0.333351

The procedure to calculate the lowest natural frequency, using the alterna-
tive equation of Dunkerley, is given in Table 6.2.

|

3k

System 1 System 3 System 3

Fig. 6.7. Decomposition of dynamic system in 3 systems (alternative method)

The spacecraft mounted on the conical payload adapter is shown in
Fig. 6.2. The spacecraft hardmounted at the interface between the space-
craft and the adapter has a lowest bending mode (x—y plane) of f,, = 20 Hz.
Calculate the lowest natural frequency of the complete system (spacecraft
and adapter). Equation (6.25) will be applied to calculate the lowest natural
frequency of a complete dynamic system. The dynamic system is composed

: J
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to calculate the lowest natural frequency, using the alternative equation of
Dunkerley, is given in Table 6.3.

1Y | Y
\ ]
Spagecraft Ay Rig
X | Spacecraft| *
¥ Flexjible ZT i
I Spagecraft x
| h g | |
I f | |
H |

Systém 1 System 2

Fig. 6.8. Decomposition of dynamic system into 2 systems (alternative equation of
Dunkerley)

Table 6.3. Spacecraft/payload adapter natural frequency calculations

2 n n
System # n=2, j (21l:2) = ]—:- Z my zmk (kg)
(D] jk =j k =j
1 2 l 2_ l 2
Clamped flexible » ~\20 2500
spacecraft
2 1 1 2
Rigid spacecraft on 37.42 2500
payload adapter
result previous mass of payload
adapter neglected
example
n 1 n
2
@O Y ¥ M f o 1764 1
J

)

j=1 "k=j
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6.5 Problems

6.5.1 Problem 1

An aeroplane settles 150 mm into its landing-gear springs when the aero-
plane is at rest. What is the natural frequency f, (Hz) for the vertical motion

of the aeroplane with g=9.81 m/s? [Moretti 00]?
Answer: f, = 1.29 Hz.

6.5.2 Problem 2

Demonstrate Rayleigh’ method for estimating the fundamental frequency
o, (rad/s) of a uniform cantilever of length L (m), mass-per-unit-length m

(kg/m), and a bending stiffness EI. Use the assumed deflection shape
3

_ X
w = Zwlip.
6.5.3 Problem 3

A dynamic system, as shown in Fig. 6.9, has 3 dofs; w, ¢ and &. The dis-
placement & is with respect to line A-B. Both dofs w and ¢ are located in
the middle of A-B. The structure in between A and B is rigid and has a
mass m per unit of length (kg/m). The discrete mass M (kg) is coupled at
the end of the massless elastic beam with a bending stiffness EI Nm?. The
beam is rigid connected at point B. The complete dynamic system is sup-
ported by two spring with a springs stiffness ¥ (N/m). The following values
shall be used: M = 0.15kg, L1=02 m, L,=0.25 m, m=0.075 kg/m,

3_153_1 = (2n100)2M and k=10000 N/m. The second moment of mass of the

2

rigid beam A-B 1 = =L} (kgn?).

1. Calculate the lowest natural frequency with the static displacement
method, assuming M » mL, .

2. Calculate the lowest natural frequency with Dunkerley’s equation, using
both the normal and the alternative equation.
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L L,

W El(
AI««P_‘:‘)--.-:-.-,I:-rw-:!?_::-? T B O M
? ) N g

k 1 5

Fig. 6.9. Dynamic System with 3 dofs

3. Calculate the lowest natural frequency using Rayleigh’s quotient. Hint:
use the deflection mode calculated in question 1.

4. Set up the equations of motion (e.g. using Lagrange’s equations) and
calculate the eigenvalues and compare these results with the approxima-
tions.

The homogeneous equations of motion are

1
mL, +M M(511+L2) M 2% 0 0
. | 2 Y1 olokL, of|"” 0
- = = o~ + =
M(211+L2) I+M(211+L2) M(211+L2) ) 3g1] @ 0
M M(—l1 +L ) M 2
(= 2 2 =
36.0
and the calculated natural frequencies f = { 233.1 ¢ Hz.
1577.5
6.5.4 Problem 4

A two mass system is illustrated in Fig. 6.10, [Ceasar 83]. Determine the
natural frequency (Hz) of the two-mass system using.

1. the Dunkerly method

2. the Rayleigh method (use 1 g gravitation field to obtain displacement
field)

3. exact method (4 dofs)
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m m
2 1 el
L
iy

EL,
lg
i

Fig. 6.10. Two-mass system

For numerical calculations use the following data:
* E=E, =70 GPa
o 1, =75x10°, I, = 59x10° m*

® L=1,=05m

Answers: 14.02, 14.62, 14.50 Hz.

6.5.5 Problem 5

The mdof system, as shown in Fig. 6.11, consists of five degrees of free-
dom.
e Derive the equations of motion using

1. the equations of equilibrium (Newton’s law)
2. Lagrange’s equations

The parameters have the following values; the masses (kg), m, = 3,
my=2, my=4, my=1 and ms = 4, the spring stiffness (N/m),

k= 3x10°, k, = 2x10°, ks = 5x10°, Kk, = 4x10°, ks = 6x10°,
ko = 6x10° and k, = 1x10°.

e Calculate the natural frequencies and associated normal modes.

e Calculate an approximation of the lowest natural frequency , ; using
the Rayleigh method. Use an assumed mode {¢,}, the static deforma-
tion vector under a 1 g gravitation field.

Answer: Exact , | = 123.4 rad/s.
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ks
ky ks

L= |[ =
%k?
| s |

Fig. 6.11. Mdof dynamic system




7 Modal Effective Mass

7.1 Introduction

The modal effective mass is a modal dynamic property of a structure asso-
ciated with the modal characteristics; natural frequencies, mode shapes,
generalised masses, and participation factors. The modal effective mass is a
measure to classify the importance of a mode shape when a structure is
excited by base acceleration (enforced acceleration). A high effective mass
will lead to a high reaction force at the base, while mode shapes with low
associated modal effective mass are nearly excited by base acceleration and
will give low reaction forces at the base. The effect of local modes is not
well described with modal effective masses [Shunmugavel 95, Witting 96].

The modal effective mass matrix is a 6x6 mass matrix. Within this matrix
the coupling between translations and rotations, for a certain mode shape,
can be traced.

The summation over all modal effective masses will result in the mass
matrix as a rigid-body.

In this chapter the theory behind the principle of the modal effective
mass matrix will be discussed and the way the modal effective mass matrix
can be obtained. The theory will be illustrated with an example.

7.2 Enforced Acceleration

An sdof system with a discrete mass m, a damper element ¢ and a spring
element k is placed on a moving base that is accelerated with an accelera-
tion u(¢) . The resulting displacement of the mass is x(¢) . We introduce the

natural (circular) frequency w,= A/z, the critical damping constant
m



112 7 Modal Effective Mass

= 2./km and the damping ratio § = Ec— . The amplification factor is

crit

Cerit

defined as Q = L

2¢°
We introduce a relative motion z(¢), which is the displacement of the
mass with respect to the base. The relative displacement is

z(t) = x(t) —u(t). (7.1)

Fh(l\'l‘ " T .‘I( ;}
REE

u(1)
moving base

Fig. 7.1. Enforced acceleration of a damped sdof system
The equation of motion for the relative motion z(z) is

5(1) + 280,2(1) + @-2(r) = —ii(t). (7.2)

The enforced acceleration of the sdof system is transformed into an external
force. The absolute displacement x(¢) can be calculated from

(1) = 2(0) + (1) = 2L, 2(t)-wl(t) . (1.3)

The reaction force F,,.(¢), due to the enforced acceleration u(t), is a sum-
mation of the spring force and the damping force

Fiae(t) = kz(t) + cz(t) = -m(z(t) + u(t)) = -mx(t). (7.4)
Assuming harmonic vibration we can write the enforced acceleration
w(t) = U(w)d™, (1.5)
and also the relative motion z(7)
21) = Z(@)d®, 2(t) = joZ(w)d® and 7(t) = -0 Z(w)d™ (7.6)
and the absolute acceleration of the sdof dynamic system is

(@)= X(0) " . 1.7)

Equation (7.2) can be transformed in the frequency domain
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[- 0+ 2i{0,0 + 0]Z(0) = -U(). (1.8)
We are able to express the relative displacement Z(w) in the enforced

acceleration (}(m) = —sz(m)
2
Z(o) = (g) H(0)U(®) 1.9)
with

H(o) = I the frequency response function

ERET

Using (7.3) we can write the absolute acceleration )f(m) as

X(0) = -0 [Z(®) + U®)] = -® [1 +(m ) H(m)}U(m) (7.10)
or
X(0) = [1 +(%)2H(m)}ﬁ(co). (71.11)

The reaction force at the base F,..(®) now becomes with the aid of (7.4)

Fypo(®) = mX(0) = m|:1 +(wn) H(w)}U(co) (1.12)

In this frame the mass m is the effective mass M, = m. The reaction force

Fy,(®) is proportional to the effective mass M, and the base excitation

U(w) multiplied by the amplification 1 + (m ) H(w) . Similar relations will

be derived for multi-degrees of freedom (mdof) dynamic systems.
When the excitation frequency is equal to the natural frequency of the sdof
® = o,, the reaction force becomes

~ Mz QU(w,). (7.13)

Faase(@,)| = HH—C}

We write (7.12) in a dimensionless form

:’;Jse(((:o)) 1 (%)ZH(‘”)]' (7.14)
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7.3 Modal Effective Masses of an Mdof System

The undamped (matrix) equations of motion for a free-free elastic body can
be written as

IMI{x(n)} +[KI{x(1)} = {F(1)}. (7.15)

We denote the external or boundary degrees of freedom with the index j
and the internal degrees of freedom with the index i. The structure will be
excited at the boundary dofs; 3 translations and 3 rotations.

Fig. 7.2. Enforced structure

The number of boundary degrees of freedom is less than or equal to 6. The
dofs and forces are illustrated in Fig. 7.2. The matrix (7.15) may be parti-
tioned as follows

wlsL sl )
MM | 5 | KKy L x, F,

In [Craig 68] it is proposed to depict the displacement vector {x(#)} on a
basis of 6 rigid-body modes [®,] with {x;} = [I] and elastic mode shapes

[@,] with fixed external degrees of freedom {x;} = {0} calculated from the
eigenvalue problem ([K;] - (A)[M;D[®;] = [0]. We can express {x} as

{x} = [®,{x} +[®,]{n,} = [, d>,,1{ T’:f } = [¥1{X}.  (.17)
p

The static modes can be obtained, assuming zero inertia effects, and
{FF»=-{0}5-and-prescribessuccessively a unit displacement for the 6

boundary dofs, thus {x;} = [/]. So we may write (7.16) as follows
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EHER! .
Kji K L 0
Enforced displacement {x;} will not introduce reaction forces in boundary

dofs.
From the first equation of (7.18) we find for {x;}

[K;;{x}+[K;llx] =0, (7.19)
hence
{x} = 1K1K, {x}, (7.20)
and therefore
(@] = -[K;]" (K11 = -[K,;]'[K;]. (7.21)

The static transformation now becomes

X

fx} = { i } - m {5} = [@,){x}. (7.22)

Using (7.18) it follows that
[(K][®,] = {0}. (7.23)
Assuming fixed external degrees of freedom {x;} = {0} and also assum-

ing harmonic motions x(z) = X(co)ejm' the eigenvalue problem can be
stated as

([K;] —lk,p[Mii]){X(xk,p)} = {0}, (7.24)
or more generally as
([K;i1 = (A M DI®;,] = {0}, (7.25)

with
® ), the eigenvalue associated with the mode shape {¢;, ,}

The internal degrees of freedom {x;} will be projected on the set of orthog-
onal mode shapes (modal matrix) [®,,], thus

{x} = [®y,1{n,}. (7.26)

The modal transformation becomes
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{x} = { N } - [ﬂ{np} = [®,1{n,}. (7.27)
j

The Craig—Bampton (CB) transformation matrix [\¥] is

X

{x} =[P, <I>,,]|: jJ = [Y{X}, (7.28)
M

with

e [®,] the rigid body modes.

[®,] the modal matrix.

{x;} the external or boundary degrees of freedom (j<6).

{n,} the generalised coordinates. In general, the number of generalised

coordinates p is much less than the total number of degrees of
freedomn = i+j,p«n.

The CB transformation (7.28) will be substituted into (7.15) assuming
equal potential and kinetic energies, hence

[PI IMIDYI{X} + [P IKIIYI{XY = [P1{F()} = {f(N},  (7.29)
further elaborated we find

.. ~ T
[Mrr Mjp} X o\, |Ki K { X }= {‘Dif q’p] { F; } (7.30)
M,; {my) My Ky (kpd| L T 1o Fi
with

e [M, ]the 6x6 rigid body mass matrix with respect to the boundary dofs

o [;(jj] the Guyan reduced stiffness matrix (j-set)
. (mp) the diagonal matrix of generalised masses, (mp) = [d>p]T[M][<I>p]
® (k,) the diagonal matrix of generalised stiffnesses,

(k) = [®,1'K[®,] = (A)(m,) = (@) (m,)
o [K,l= [0 [K,)[®,]+[K;l[®,] = (- [K;1[K;]" [K,] + [K,DI®,] = [0]
e [K,] = [K;,]" = [0]

o [Kjl= [@,] [KI[®,]= [0]
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Thus (7.30) becomes

. T
M, L'|| % +{0 0 H xf}={q)ij¢1{|{ 0}={Ff}, (731)
L (mp> ﬁp 0 (mp}\‘p) np 1 0 FJ 0
with
o [M,]=[®,) [M[®,)= [L], [L]" is the matrix with the modal participa-

tion factors, L, = {¢,,k}T[M]{¢P,,}, k=126, I =12..,p. The
matrix of modal participation factors couples the rigid-body modes [®,]
with the elastic modes [®,] .

e {F;} = {0} No internal loads are applied.

Introducing the modal damping ratios {, we can rewrite (7.31) as fol-
lows

M, L'|| % {0 0 ] % J{o 0 Hx,}={Fj}
L (my|| 7, | (0G0 4, [0 <mA), 0
(132)

Equation (7.32) can be divided into two equations

[M,,1{%} + [L1"{f,} = {0}, (7.33)
and
[L1{x;} + (m,,){ﬁp} + <2mpCp(0p){ﬁp} + (mA){n,} = {0}. (7.34)
Equations(7.33) and (7.34), when transformed in the frequency domain,
give
[M,){X} + [L1'{1L,} = {F}}, (735)

and

(LI} + (m) (T} + (2m, G0 (T} + (mAMTL,} = {0}, (7.36)
with
o x(1) =X, X = —a’X
o n(n) = M, 11 = joIl and T = -’11
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o F(t) = F&™
With (7.36) we express {I1,} in {X;}

m,[- o + 2j5,0,0 + 111, = -[L,){X;}, (1.37)

with
e (L] = {9, k}T[M][(I),] 1x6 vector with modal participation factors
e L, = {¢p,k}T[M]{cI),,j} participation factor with k = 1,2,...,p and

i=12..,6
Thus (7.37) becomes
L{X, LJ{X,
I, = [LJ{X)} 1 _ LN ’}Hk(—“l). (738)
2 OV .. © 2 (O)
0 1—(—) + 28— O
(OH W,

Equation (7.38) will be substituted into (7.35) giving

T L N L PO P
(M, {X;}+[L], ... Lp]{(mk) - Hk(mk)}{xj} = {Fj} k=12,...p (1.39)
LTI 2 .
Lol W} ® o 1= [T
{[M,,HZ - {(mk) Hk(mk)ﬂ{X,} (A1 (7.40)
k=1
We can prove that
p T
M, 1= ZM (7.41)

m
k
k=1

because
M,,] = [©,) 1[0, 11, )" 1M1, 1) [0, M[®,] = (@,1(M[®,], (7.42)
or

[M,,] = [®], (M) {‘DH’} (19,1 M, [®,,]) [, 01(M] [‘I’iJJ - @) M)
0 0
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Assuming the inverse of [®@;,] exists. We define the modal effective mass
[M,] as follows
[L'[L]

(Mg i) = m, (7.43)

with
° [Lk] = {q)p’k}T[M][q)r]
° mk = {¢p,k}T[M]{¢p,k}

The summation over all modal effective masses [M,,] will result in the
rigid- body mass matrix [M,,] with respect to {x;}. (7.41) becomes

p=
M, ]= z [Meff,k] > (7.44)
k=1

Therefore (7.40) can be written

Lﬁl [Meff,k]{l + (i)sz(i)}}{Xj} = {IA‘"j} (7.45)

Equation (7.45) can be decomposed into modal reaction forces {Fy, .}

p R
Z{Fbase,k} = {FJ} P (746)
k=1
with
2 ..
{Fbase,k} = [Meff,k]{1 + (O)Qk) Hk(mgk)}{xj} . (747)

Equation (7.47) is very similar to (7.12).

For the dynamic system, as illustrated in Fig. 7.3, the effective masses
[M 4] will be calculated. The parameters m (kg) and k (N/m) are, respec-

tivelyy m =1 and &k = 100000. The set of internal dofs is

{x;} = {x,, x5, X3, X4, X5, X¢, x7}T and the boundary dof is {x;} = {x,}.



120 7 Modal Effective Mass

Fig. 7.3. 8 dofs dynamic system

The following procedure will be followed

1.

{x;} will be assigned, x; = x;

-1
Calculate the rigid-body modes [®,] = {‘[Kii] [Kij]} X =xg =1
1

3. Fix the dofs {x;}, x; = x3 = 0

Calculate the natural frequencies and associated mode shapes [®,],

Xj = xg = 0

Assemble [¥] = (@,9,]

Calculate [¥1'[M1[¥] and [¥]'[K][¥]

[L]'TL]
my

Calculate the modal effective masses per mode [M, ;] =

p
Calculate the summation of modal effective masses [M,,]= Z (M ]
k=1

The rigid-body mode {¢,}, is with respect to xg = x; = 1, and the natural

frequencies and associated mode shapes are with respect to xg = x; = 0 are
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[ 24.4522 |
31.1052
36.6716
{fo} =1 64.4657 > [9,] = ;
81.4344

82.0637

| 95.9164 |

r \
e = e T T S N U Y

0.5347 -0.6015 -0.5781 —0.3363 —0.3717 0.3630 -0.1343
0.4075 -0.3717 -0.2712 0.2155 0.6015 -0.6022 0.3534
0.5347 0.6015 -0.5781 —-0.3363 0.3717 0.3630 —0.1343
[@,] = 0.4075 0.3717 -0.2712 0.2155 -0.6015 -0.6022 0.3534 )
02407 O 0.3831 -0.6458 0 -0.0202 0.1681
0.1835 O 0.1797 0.4137 0 0.0336 -0.4425
0.0664 O 0.0728 0.3044 0 0.0984 0.7001
0 0 0 0 0 0 0

The mass matrix [‘P]T[M 1['¥] and the stiffness matrix [‘I‘]T[K][‘i‘] become

39 55874 0 2742137104 0 0.7400 3.8552
5587415746 0 0 0 0 0 0
0O 0 10000 0 0 0 0 0
e MpE] < 27421 0 0 19255 0 0 0 0
37104 0 0 0 50429 0 0 0
0 0 0 0 0 10000 0 0
07400 0 0 0 0 0 10989 0
38552 0 0 0 0O 0 0 72863
o0 o0 ©0 0 0 0 0
00034 0 0 O 0 0 0
0 0 00382 0 0 0 0 0
ke = 1060 0 0 0102 0 0 0 0
0 0 0 0 0874 0 0 0
0 0 0 0 0 0218 0 0
00 0 0 0 0 029 0
0 0 0 0 0 0 0 26464

The results of the calculations are summarised in Table 7.1.
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Table 7.1. Calculation of the modal effective masses

Natural Modal Generalised  Modal effective
Mode shape frequency participation masses
# (HZ) T mass [Mem,k]
factor [L,] [m,] (kg)
1 24.5422 5.5874 1.5746 19.8271
2 31.1052 0.0000 1.0000 0.0000
3 36.6716 2.7421 1.9255 3.9048
4 64.4657 3.7104 5.0429 2.7300
5 81.4344 0.0000 1.0000 0.0000
6 82.0637 0.7400 1.0989 0.4983
7 95.9164 3.8552 7.2863 2.0398
Total mass (without mg = 10m ) 29.0000

The mass mg = 10m (connected to dof xg ) is eliminated because the elastic

modes are with respect to x; .

It appears that the modal effective mass of the first mode shape is already
68.37% of the total mass of 29 kg. The second and the fifth mode shapes
have zero modal effective mass. Modes with zero modal effective mass
cannot be excited in the case of enforced acceleration.

The absolute value of the normalised base force M can be written
X(w)
as
F . 2
Foae )| = |3 (11,, kl{l (2 m(2)Y.
- g [0 o
X(m) k=1 k k

and the calculations are illustrated in Fig. 7.4.

7.4 Problems

7.4.1 Problem 1

The problem is defined in the example Fig. 7.3, however apply a large mass
Mign=n10°skgratuxgs Thissimethodsisidiscussed in [Appel 92].
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Fig. 7.4.

F base(f)
X(f)

i (M, k]{1 n (f{)mk(é)}l

k=1

Calculate the following parameters:
¢ The free-free mode shapes [¢] .

2
M, 0.
e Calculate (—Tl“‘q)—’g) per mode “i” and compare the results with the
i i

modal effective masses as calculated in the example. What is your con-
clusion?

7.4.2 Problem 2

A cantilevered beam, as illustrated in Fig. ¢, has two discrete masses with
mass m . The distance between the masses and the clamped interface is L.

3
We assume a mode shape ¢(x) = (I%) .

Using ¢(x) calculate:
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o the modal participation factor with respect to clamped position A
o the effective mass

Answers: ® = 3.44 EL @m 2m and 81

9 9 m
ml3 64 8 65

Fig. 7.5. Cantilevered beam




8 Response Analysis

8.1 Introduction

The analysis of responses of a mdof linear dynamic system due to either
dynamic forces or to enforced motions; displacements, velocities and accel-
eration will be discussed in this chapter. The general equations of motions
are set up and a partitioning between internal and boundary dofs had been
made in order to solve the internal dofs because boundary motions were
applied in combination with forces. When solving the equations of motion a
distinction has been made between relative motions, motions with respect
to the base, and absolute motions. Also a distinction had been made
between redundant and non redundant boundaries. The equations are appli-
cable to solve the responses both in the time and the frequency domain.

In general, the equation of motions, in particular the internal dofs, are
solved using the mode displacement method (MDM), because the full
damping characteristics, a full damping matrix, are not readily available.
The theory will be illustrated with an example. The chapter will end with a
set of problems to be solved by the reader.

8.2 Forces and Enforced Acceleration

Forces and enforced acceleration will be discussed. An example of

enforced motion is the acceleration at the interface between the satellite

(spacecraft) and the launch vehicle. The enforced acceleration of a structure

can be treated in three different methods:

e Relative motions: The absolute motion {x(¢)} of the dynamic is sepa-
rated into a relative motion {z(z)} with respect to the base and the

motionratithe base {x;(f) ¥ Therabsolute motion {x(¢)} is the summa-
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tion of the motion at the base and the relative motion
{x(1)} = {z(9)} + {x,(1)} . The dynamic system has fixed free boundary
conditions, either determinate or nondeterminate.

e Absolute motions: The absolute motions {x(¢)} of the dynamic system
are calculated in a direct manner as a result of forces {F(¢)} and
enforced motion {x,(r)}. The dynamic system has fixed free boundary

conditions.
e Large-mass approach: The dynamic system is a free-free structure, how-
ever, attached to the interface is a very large mass to introduce as a force

the enforced motion {x,(¢)} to calculate the absolute motions {x(#)}.

The damped equations of motion of a mdof dynamic system are

[MI{x()} + [CH{x(D} + [KI{x()} = {F(1)}. @®.1)

8.2.1 Relative Motions

With the relative-motion approach the absolute motion {x(¢)} is build up
from the relative motion {z(#)} and the enforced motion {x,(¢)} . The rela-

tive motion {z(¢)} is with respect to the fixed base. The absolute displace-
ments {x(¢#)} may be partitioned in a set of internal dofs {x;} and a set of

boundary dofs {x,}. The boundary dofs are equal to the enforced displace-
ments {x,(z)}. The absolute displacements {x(¢)} become

{x} = { i } (8.2)
Xp

The same expression exists for the velocities {x}

gy =%l 8.3)
%

and for the acceleration {x}

{x} = X ) (8.4)
Xy
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The static relation between the internal dofs {x;} and the boundary dofs
{x,} can be calculated from

I:Kii Kib:| xi | _ _0 ' 8.5)
Ky Kpp| | X, Fyp

The stiffness matrix [K] is also partitioned with respect to the internal
dofs and the boundary dofs. The reaction force {;‘ »} is due to the enforced
displacements {x,}. From the first equation of (8.5) we obtain the static
internal displacements {x;} due to the boundary static displacements {x,}

{x} = ~[K; ' [K){x,} = [G){x,} (8.6)

The absolute displacement {x} can be written as a summation of the rel-
ative displacements {z} and the static displacements caused by the bound-
ary displacements.

{x} = { i }: { Z }+ i‘i = { z }+{ Gib jl{xb}. (87)
Xy 0 xp 0 I

Gib

The matrix [®,]= [
1

} consists of the so-called “contraint modes*,

[Craig 68].
We will substitute (8.2), (8.3) and (8.4) into (8.1) and also partitioning
the force vector {F} in internal and boundary loads.

My My | x; + Cii Cip|] xi + K;i Ky { Xi }= { F; } (8.8)
My Myl | %, Coi Con| | xp Ky Kpp| L %, F,
We will depict the relative motion {z} on the modal base [®,] as fol-
lows

{z} = [®]{n;} (8.9)
with
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e [®,] the modal base obtained from the -eigenvalue problem

([K,i] - 03 [My]) {04} = {0}, with [@] = [y, ¢, ..] and o}
the k-th eigenvalue.
e {mn,} are the generalised coordinates

The mode shapes [®@;] obey the orthogonality relations with respect to
the mass matrix [M;;] and the stiffness matrix [K;;]

T
(@) M@ | _ | (md (8.10)

(@17 (K, ][] (@2my)

After the base transformation we assume a diagonal matrix of modal
damping ratios, hence

(@1 [C,1[®;] = (2L, 0m,,), (8.11)

with {, the modal damping ratio associated with mode {¢, ,}.
Equation (8.7) can be written

{x} _ { X; }= { Z }+ J_Ci = l:q); Gib:|{ M; } = [“P]{X} (812)
X, 0 X, 0 I]|L=x

We will rewrite (8.1) as follows

(1 IMINPI{X} + [P [CINYILXY + [P IMIIPI{XY = [¥1{F(n}, (8.13)
with

M., O'M.G,+® M.
° [\P]T[M][\I;] - . i iiri . i uT ib iib
GypyM;®;+ M, ®@; GM,,G, + GyMyy, + MGy, + My,
@/ C,0, ®!C,.G,, + D C,
° [\P]T[C][LP] = . [ A 1 Al ] . i usz i “ib
GipCii®@; + Cp @; G, Ci;Gip + G Cipy + €y, Gy + Gy
O K,.®, ®'K.G,+ DK,
° [“I”]T[K][\P] - . [t TRl . i uTtb i ™ib
G, K@ + K, ®; G;,K;;G;, + G, K, + K;,,G;, + Ky,
o [®K,Gy+® Kyl = [0]
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and, furthermore we may write

o [Mos] = [Gi,M;Giy+ GiyMyy + MyGiy + My,

o [My] = [q)iTMiiGib + d’iTMib]

o [My] = [GZ;;MH(I)[ +M,®;]= [(I)iTMiiGib+ cI)iTMib]T
o (K] = [GK;Giyp+ GiyKiy + KpiGiy + K]

o [Ci] = [q)iTCiiGib + (I)iTCib]

o [Cul = [GLC,®,+Cp)= [D]C,G,y+ IC, T

o [Cw] [GinCiiGib + G?;;Cib +CpiGip + Cppl
o [(Ku] = [q’iTKuGib + (DiTKib]= (0]

T
* [K,l= [GﬁKiiq)i'*'Kbi(Di]: [q)iTKiiGib+q)iTKib] = [0]

* U}bb] [GinKiiGib + GinKib +K,,Gp + Kyl

129

Equation (8.13) becomes, applying the orthogonality relations of modes

with respect to the mass and stiffness matrix

{<mi,(> n?ib] fis |, [€28om,) Conl | _{[(mzmik) 0} n
b

Mpi Mpy|| %o Coi  Cu|| %o 0  Kps|| ™
and the generalised forces become
T T
[\P]T{Fi}___|:®iGib:|{Fi}= @ F,
Fy 0 IJLF, G,F;+F,

Thus, finally, the first part of (8.14) becomes
(m) {0} + (2L m ) {Ni(1)} + (‘DimiO{ni(t)}

= {®,}{F.()} - [Mis]{%(1)} - [Cir]{5s(£)} .

T F,‘
Fb

= [¥]

(8.14)

(8.15)

(8.16)

Equation (8.16) can be either solved analytically or using numeric schemes

like the Wilson-0 , the Newmark-beta methods.

If the enforced-acceleration {xp}-is specified the velocity {x,} must be

obtained by integration of the acceleration {x,}
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L0} = Lis(tg)} + | Li(n) . 8.17)

fo

With a time increment At we can use the trapezoidal approximation of
the integral [Schwarz 89] in (8.17)

n-1
L)} = Lin()} + 81 35(t0)} + 3 Gist)} + 30} |, 818)
j=1
with
o 1 = fy+jAt
e ¢, =t,+nAt =t

{xo(t, D} = {xp(t,)} + A3’({565(!,,)} +{x(t,41)})

In the frequency domain we have
{n:} = (@)}, {1} = jo{ll(w)} and {IL} = -o’{II(0)}

{x,} = {X,(@)}d”, {Xp} = -0 {X,(0)} or {5} = {Xp(®)}"",

oL {X {Xb(®)} —{Xs(0)}
(X} = LX) RO} ang (x,) = K0

{F;} = {F(w)}*

If (8.16) is transformed in the frequency domain we obtain
[{(@=0")myg) + (2jC,,0my) {IT ()}

= o/F(@){(Mal-51Cal JiHo(@)} . #.19)

A dynamic system is shown in Fig. 8.1. The number of dofs is 10; x, ,
Q15 Xy, Oy, X3, O3, X4, @4, x5 and x,. The springs with a spring stiffness
ks and ks are coupled between the displacements x; — x5 and x5 — x,

T
respectively. The set of boundary dofs {x,} = { X)X Xy } and the internal

T
dofs are {x;} = { 01 Oy X3 O3 Oy X5 Xg } )
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Fig. 8.1. Dynamic system enforced with loads and acceleration

T
The enforced accelerations are {x,} = { X1 %2 Xa } .

A dynamic load F; is applied to dof x; .

Elm
¢ o o

I, I

L

Fig. 8.2. Bar element

The stiffness matrix and mass matrix of a bar shown in Fig. 8.2 are from
[Craig 81, Cook 89].

12 6L -12 6L 156 22L 54 -13L

El|6L 4L% -6L 2L’ mL| 220 4L 13L -3L°
Ll-12 -6L 12 -6L 420\ s4 13L 156 -22L

6L 2L> —6L 4L —13L -31% -22L 4L*

The total stiffness matrix [K] and the total mass matrix [M] of the mdof
linear dynamic system, as illustrated in Fig. 8.1, can now be set up. The

(Kool = s [Myy ] =
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(12 6L -12 6L 0 0o 0 0 0 ]
6L 4L 6L2L* 0 0 0 0 0 0
12-6L 24 0 -12 6L 0 0 0 0
6L 20> 0 8L> 6L 2> 0 0 0 0
0 0 -12-6L 24+’-c§£3 0 -12 6L ksl 0
EI EI
(K] =f‘§ 0 0 6L2L* o 8LP-6L2* 0 o |-
0 0 0 0 -12 -6L 12-6L 0 0
0 0 0 o0 6L 2L*-6L4L* 0 0
0 0 0 ol o UathoL® ki’
El EI EI
00 00 0 0 0 0 _11653 kel
i EI  EI |
and the total mass matrix [M] becomes
(156 22 54 13 0 0 0 0 T
2L 4> 13L 3L 0 0 0 0
54 6L 312 0 54 —13L 0 0
13L-3L* 0 8L® 13L 3L 0 0

0 0 54 -6L 312 0 54 -13L

0 -13L-3L* 0 8L* 13L -3L?

0
0 0 0 0 54 13L 156 -22L
0

0 0 0 -13L-3L>-22L 41> 0
420mg
ml

420my
0 0 0 0 0 0 0 0
ml

The submatrices [K,], [K,,], [K,] =I(K,1", [M,], [M,] and

ml
[M] = 420

OO o9 oo o
S OO0 o0 oo o

0 0 0 0 0 0 0 0

[M,] = [M,,]" are given as.
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ar* 20> o 0 0 0
202812 6L 21* 0 0
0 —6L 24 kL 0 6L kL 0
- * R “EI
EI 2 2 2
k=50 2" o 82 0 0|
0 0 6L 204> 0 0
ksL? o o (ks+kL® kgL’
“EI EI  EI
3 3
keL® kgL
I 0 O 0 0 _H ?I—_
12 =12 0 . Eg|6L6L O 0 0 00
[Kppl = 5|-12 24 0| and [K,]= [K;,)" = 3|76L 0 ~12 6L 0 00]-
0 0 12 0 0 —-12-6L—6L 00

Furthermore for the mass submatrices we get

-

4> 31* 0 0 o0

2312 81% 13L -3L% 0
0 -6L 312 0 -I13L

0 3> o 8L® 3L

S o o o
S O o o o

I
[M-.]=l
400 o 0 -13L-3L% 4L 0
420m5
0 0 0 0 0
ml
420m6
0 0 0 0 0
. ’nI -
and
156 540
[My,] = 10|54 312 0 |-
0 0 156
with

. o |22L-13L0 0 0 00
(My]= M) = 551-6L 0 54-13L 0 00|
0 0 54 13L -22L00

Indeterminate (redundant) Interface
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If the interface {x,(¢)} forms a redundant set of displacements we have to
use (8.16) to obtain the responses.

Mx(n}

{F;}

T {xp(1)}
Fig. 8.3. Forces and enforced acceleration (redundant set)

(M (T} + (24 0m) N0} + (@gm{n,(D)}
= (@1 {F(0} - M }{5s(1)} - [Carl{in()} .

In the case of modal damping [<I>,-]T[C,.i][<b,-] = (2 oym,) (8.11) there
is no damping matrix [C] available and we assume no damping with
respect to the constraint modes [®,.], hence [Eib] = [0], [Z‘bi] = [0],
[Css] = [0] and (8.16) becomes

(m,'k){ﬁi(t)} + <2ckmkmik>{ﬁi(t)} + (wimiﬂ{m(t)} = [‘Di]T{Fi(t)} - [A_dzb]{xb(t)} s
or

(M M0} + (2G0m ) {Mi(1) } + (Opmd {ni(1)}

T
= [@;]"{Fi(1)} - {ﬂ [M][D@_1{xs(2)} . (8.20)

Equation (8.20) can be solved either analytically or by means of numeric
schemes like the Houbolt and the Newmark-beta methods.

In the frequency domain we can now solve II,(w), with

N0 = My(e)d™,

T
{¢,-k}T{F,-<m)}—{ ¢Sk } [M][®,]1{Xs(w)}
I (w) =

2 2 .
m (-0 + 20, 0,0)
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The relative motions {z} can now be calculated, with
{z()} = Z(w)d™", using (8.29) Z(w) = [®,]{IT(w)}

1

2.
m(0,-0" + 2§, m,0)

T
Z(w) = [®;)( >([<I>,-]T{Fi(m)}—[ q;’:l [M][¢C]{?2b(w)}J-

(8.22)

The absolute motion {x(#)} = {X(m)}ei‘”' can now be calculated with
(8.7) and is

{X(w)} = { Z(O"’) }+[ GI“’ }{Xb«o)} = { Z((;") }+[<I>01{X,,(w)}. (8.23)

The physical parameters, involved in the dynamic problem as shown in
Fig. 8.1, are set to:

E = 70x10° N/m?, I=6x10" m* m =05 kg/m, ms =004 kg,
mg = 0.02 kg, ks = 54000 N/m], k, = 27000 N/mand L = 0.1 m.

The elastic modes [‘DJ and constraint modes [®,] are presented, with the
0
sequence of the 10 dofs; x,, @,, x,, ©,, x5, @3, x4, @4, x5 and x4 .

The first three lowest natural frequencies, assuming {x,} = {0}, calcu-

lated are: | f, | = [ 124.8,254.7,498.9 | Hz. The associated vibration modes,

such that the generalised mass matrix is a unit matrix, and the contraint
modes are:

(0.0000 0.0000 0.0000 (1.0000 0.0000 0.0000

—1.5489 2.6060 —21.2465 -11.6667 12.5000 —0.8333
0.0000 0.0000 0.0000 0.0000 1.0000 0.0000
3.0844 -5.1185 39.6527 —6.6667 5.0000 1.6667
,:CDJ _ | 0.3832 -0.6238 4.4993 ] = -0.2500 0.8750 0.3750.
0 0.7745 -1.3030 10.6233 0.8333 -6.2500 5.4167
0.0000 0.0000 0.0000 0.0000  0.0000 1.0000
—-6.1688 10.2370 -79.3054 3.3333 -10.0000 6.6667
3.0398 -3.8905 -0.7894 -0.2500 0.8750 0.3750

| 5.5834 4.3370 0.1257 | | -0.2500 0.8750 0.3750 |
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Determinate Interface

When the enforced acceleration takes place at one node “A‘ with three
translations and three rotations the contraint modes are, in fact, the six rigid
modes [®,] = [®,] with respect to the node “A* This is called a nonre-

dundant base excitation. This is shown in Fig. 8.4.

N ox(1)

Fig. 8.4. Enforced acceleration at one node “A*“(nonredundant)

This means that [K][®,] = [0] or no strain energy is stored in the elastic

body with the stiffness matrix [K] or [Kss]= [®,][K][®,] = [0]. The same
applies to the damping matrix [C]. No energy will be dissipated if the
dynamic body moves as a rigid body, with [C][®,] = [0] and
[Cosl= [®,1[C][®,] = [0], hence [Cis] = [0] and [Ch] = [0]. becomes
now

(my) Mip
0 0 0o ol * F,

i . [<2Ckwkmik> 0} ni + {(mimik) 0} n; - [\P]T F;
ﬁbi I_Wbb

Xp Xp

(8.24)

The mass matrix M is also called the matrix of the modal participation
factors [L]” and can be expressed as

T

[Mis] = [L] = ﬁﬂ M][D,]. (825)

The matrix of the modal participation factors is with respect to node “A*
The first equation of can be written as

(M A0} + (2G@em ) {Ni(1) } + (@pm ) {n,()}
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T

= [@,]{F(n)} - {qj (MI[®,){xs(1)}. (8.26)

Equation (8.26) can be solved either analytically or by means of numeric
schemes like the Houbolt and the Newmark-beta methods.

Transforming into the frequency domain and using (8.25) we obtain the
following matrix equations of motion.

[((@p-0")my) + (2jo0m) {T(0)} = [@]1{F(0)}-[L]{X®)},
(8.27)

We can now solve IT;(®)

u (@ HLI Xo@)}

I, (w) =
m,.,c(o),":—(n2 +2j{,0,0)

L2, ... (8.28)

The relative motions {z} can now be calculated, with

{z()} = Z(w)d™",
Z(0) = [®]{IT(w)} (8.29)

1
2 2 ..
m (-0 + 2jC,,0)

Z(w) = [®;)¢ Y([®;1{ Fi(@)}-[L]"{Xs(®)}). (8.30)

The absolute motion {x(f)} = {X(®)}¢* can now be calculated with
(8.7

{X(0)} = { Z(O“” }+[ GI"’ ]{Xb(m)} = { Z((;”) }+[<I>,1{Xb(m>}. (8.31)

We will calculate the rigid body vector {®,} with respect to {x,, x,, x,}
assuming

xi 1
{xo}=19q 5, (= {Thu =11 (u,
b 1

then the rigid-body mode [®,] are presented, with the sequence of the 10

dofs; x;, @, x5, ©,, X3, Q3, X4, @4, x5 and x .
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1.0000
0.0000
1.0000
0.0000
{0} = [@]{T} = { MO0,
0.0000
1.0000
0.0000
1.0000

1.0000

The natural frequencies and associated modes are the same as for the unde-
termined case.

8.2.2 Absolute Motions

We start with (8.8)
My My | x; + Cii Cip|) xi + Ki; Ky { X }={ Fi}
My Myl | %, Coi Con| | xp Ky Kpp| L X, F,
thus

[M”]{xz} + [C,'i]{)&i} + [Kii]{xi}

= ({F;} = (IMp){xp} + [CiJ{xs} + [K;;1{x,})) (8.32)
We will depict the internal motion {x;} on the modal base [®,] as follows
{x;} = [®;]{n;}, (8.33)

with

e [®;] the modal base obtained from the eigenvalue problem
([K:) - e M) {05} = {0}, with [®] = [0, 0y, ..] and o}
the k-th eigenvalue.

e {mn,} are the generalised coordinates.

The mode shapes [®;] obey the orthogonality relations with respect to
i iffness matrix [K;;]
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T
(@1 M®]) | _ ] (mw (8.34)

[®,1(K,1[®,] (oImy)

After the base transformation we assume a diagonal matrix of modal
damping ratios, hence

[@1[C, 1] = (2L ,0m,) . (8.35)

We will substitute (8.33) into (8.32), premultiply by [<D,-]T and obtain the
following equation, assuming [C;,]1{x»} = (0),

(@17 (M, 1[®1{n:} + [@,1[C,1[®1{n:} + [®,][K,][®,]1{n,}

= ([O1{F;} - [®,) (1M, 1{Zp} + [K;H{x, 1)) - (8.36)
Using the orthogonality relation from (8.34) we get
(m ()} + 2L om ) {Ni(1)} + <(oimik>{ni(t)}

= [0 {F3 - 101 (IM,1{5p} + [K,1{x, 1) . (8.37)

Equation (8.37) can be either solved analytically or using numeric schemes
like the Wilson- 6, or the Newmark-beta methods.
If the enforced acceleration {x,} is specified the displacement {x,} must

be obtained by integration of the acceleration {x,} (8.17). The displace-
ments {x,(¢)} can be obtained with

{xp(0} = {xb(to)}+'|. {xp(t)}at . (8.38)

With a time increment Ar we can use the trapezoidal approximation of
the integral [Schwarz 89] in (8.38)

n-1

(1)} = D400} + A 20} + T o)} +3 {00}, (839)
j=1
with
o 1= ty+jAt
® 1, =ty+tnAt =t
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o {x(1,, )} = {x,,(z,,)}+%’<{:eb(r")}+{xb<t"+,)}>

In the frequency domain we have
o {0} = {I()}™, {Il}} = jo{li(0)} and {IL} = -o*{T(®)}
o {x} = {X, (@)}, {Xo} = 0’ {X,(®)} or {is} = {Xs(w)}d"",

{Xp} = {X‘L;iom)} = _J{ b(E)(D)} and {Xb} - { b(20))}

We can now solve IT;,(®)

(0} F(@) - (0, (1M, 1@} K, (0
(0]

(o) = L, k=1,2,..

m,.k(u),f—o)2 +2j§,0,0)
(8.40)

The absolute motion {x(#)} = {X(®)}¢®" can now be calculated
(X(@)} = { Xi(@) } - {[‘DJH I1;(w) } (8.41)
X, (o) 1 X, ()

8.2.3 Large-Mass Approach

The large-mass approach is illustrated in the following example. To intro-

duce the enforced acceleration a very large mass M has been attached to

the sdof system. This large-mass is loaded with a dynamic load F = ;lu

with u the enforced acceleration. The dynamic system is shown in Fig. 8.5.
The sdof system has a discrete mass m, a spring with a spring constant &
and a modal damping . The undamped equations of motion are

m O] X1 +[k _HMI)}: 0 , (8.42)
0 M|| Fany | Lk KL= Mii

[MI{x(n}+[KI{x(0)} = {F(D)}. (8.43)

or
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The modal damping { will be introduced after the decoupling of the
equations motion with the modal displacement method.

m T xy(1)

T Mii

Fig. 8.5. Frequency-response analysis, large-mass approach

The undamped eigenvalue problem of the dynamic system can be written as

SR MR

The nontrivial solution can be found if

m 0 k —
detf{ -A| |+ =0, (8.45)
oM -k k
thus the following equation must be solved
(k= AM)(k-AM) =K = 0, (8.46)
with two roots
, k(m+ M)
ll = 0, }\«2 = (02= T (8.47)

mM

The eigenvectors (mode shapes) associated with the eigenvalues A; and A,
are
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11
[@] = | _m- (8.48)

M

The associated generalised masses become

m+ M 0
(mg)= [@1'[M][®] = ( ,,,) : (8.49)
0 m| 1+ oy
M
and the corresponding generalised stiffnesses are
0 0 0 0
= - T _ 2| _ -~
(kg)= {Amg}= [®]'[K][®@] = |/ ,{1 +_ﬁ_) =1 ,{m +AMJ”{1 +§) . (8.50)
M mM M

Applying the mode displacement method (MDM) with
{x(} = [@1{n(D)}, (8.51)
then
(D) [MI[@I{N (1)} + [@1 [MI[®I{n()} = [®1{F(r)}. (8.52)

With the introduction of the ‘ad hoc” modal damping { the two uncou-
pled damped equations of motion for the generalised coordinates {n(¢)}
become

(m){Ti(1)} + (2Lmg MY {N(D} + (k) {n()} = [@1{F(1)} = {A(1)}.(8.53)

or
m+a 0 . 0 0 0 . )
m |, ~ ni(z
. m+M m .
0 n{1+§) fia(0) 02¢ 1{ — )m(l+:] Fa(t)
M mM M

(8.54)
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Premultilpying (8.54) with the inverse matrix of the generalised masses
[10} m |, {0 0 } m@ (00 { n, (1) }
0L fa(n) 028w, N2(2) Omi n,(?)

-1

~

m+M 0

- - Mi | |1 DS (8.55)
0 m{l+— —mii +1(L -1

m
M M

Solutions in the frequency domain are

M} = {0}, L} = {U(w)}”

(8.56)
00 .
-m2[1 0} R 1 { (@) } =1 { ! }U((o) (8.57)
01 0 2jlon, 0 o, IT,(®) mol-
M
The solutions for the generalised coordinates become
1 1 .
m(e) = -— U(w), (8.58)
o[ 24
M
and
-(2 + 1)(7(03)
M 1 .
My(0) = 5— = ——H(0)U(). (8.59)
0, -0 +2jfon, m
M

The physical displacement vector { X(®)}

{X(0)} = [PH{I(w)} =

IT, (w) + I1,(o)
@)1 _ m (8.60)
I, (0)-=I1,(®)
M
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1
I, (@) + I,(o) | —;z—H(w) )
{X(w)} = m = 3 \U(w), (8.61)
I, (®)-—TII
- (—%+£H(m))
M M

and for the accelerations we may write

) 1+ 0’ H(w)
{X(0)} = -0’ {X(0)} =

- [1 mzﬂy(m)) Uw).  (8.62)
_+1 - ~

~

M M

Assume M » m, thus g «1 (8.62) becomes

M
{X(0)} = -0’ {X(0)} = { 1+0°H(0) }U'(co), (8.63)
1 .

thus
X1(0) = [1+0’H(®)]U(o) (8.64)

with
lim X1(®) = 0, (8.65)

and
X2(0) = U(®). (8.66)

The attached mass M will be of order O( 10°m... 108m) in order to obtain
reliable responses.

The results of the large-mass approach are checked with the relative
motion approach, as illustrated hereafter (Fig. 8.6).
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m T
x(1)

— 1
moving base

Fig. 8.6. Sdof system with enforced acceleration

With the introduction of the relative motion z(z),
z(t) = x(t)—u(t), (8.67)
we can write the equation of motion of the sdof system
Z(1) + 280,2(1) + @hz(t) = —i(1) (8.68)

The enforced acceleration of the sdof system is transformed into an external
force. The absolute acceleration x(¢) is

(1) = 2() +iu(t) = 2L, 2(1)-0z(t) (8.69)

The response and base excitation transformed from the time domain into
the frequency domain is

20 = Z(0)d™, u(t) = Ulw)e™. (8.70)

The complex relative motion Z(w) can be expressed in U (®)

Zw) = -——ID__ - g, 8.71)
o, -0 +2i{on,
and
Z(®) = joZ(®) = joH(®)U(o), (8.72)
and
Z(0)= ~0°Z(®) = 0’H(0)U(o) . (8.73)

The absolute acceleration X (®) becomes

2jCw,0H(®) + AH(©)}U(0) = {2j{o,0+ 0.} H(o)U(o), (8.74)
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X(0)= Z(0)+ U(w) = [—%—H(m)}l}(m), (875)
(0]
and
X(0)= Z(0) + U(e) = [1 + 0’ H(0)]U(e) , (8.76)
with
lim X(®) = 0. (8.77)
8.3 Problems
8.3.1 Problem 1

A linear dynamic system, shown in Fig. 8.7, consist of 4 dofs; x,, x,, x3

and x, . The enforced acceleration are | %, | = | %1, %5 ] = [, &°®| m/s2
and the internal dofs are |x;|=|x,x;|. All masses are equal
m =my,=my=my=1 kg and all stiffness are equal
k, = k, = k3 = 1000 N/m. The modal damping ratio for all modes is
¢ = 0.02.

X1 Xy —> X3 —_— X4
my AV my AAAM my AAAM my
kl k2 k3

Fig. 8.7. 4 dofs linear dynamic system

Perform the following activities:

e Set up the total mass matrix [M]

e Set up the total stiffness matrix [K]

e Set up the submatrices [M,], [M,,], [M,,] = [M,;]"

e Set up the submatrices [K;;], [K,,], [K;] = [K,;]1"

o Calculate eigenvalues.and.associated eigenvectors from eigenvalue
problem ([K,;] — ®;[M;]1){0;}
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e Set up the modal matrix [®;]
e Calculate the constraint modes [®_]

e Calculate vector {7} = {Z(®)}¢*, 8 = 0, g,n, (8.23)
e (Calculate the absolute acceleration

(%} = {X(0)}*= (Z(w)} + (X)), 0 = 0, g,n,(8.23)

e Calculate directly the absolute acceleration {x} = {)Z(w)}ej o

0 =0, g,n (8.41)

8.3.2 Problem 2

A linear dynamic system (shown in Fig. 8.8) consists of 3 dofs; x,, x, and

X3.

X1 X9 —>X3
my J\/\/\/\‘ my ‘/\/\/\/\‘ ms
k, k,

Fig. 8.8. 3 dofs linear dynamic system

The enforced acceleration are x, = x; = ¢ m/s? and the internal dofs are
| x; | = | x5 x3|. The masses are m; = 2m, = 2m; = 2 kg and the stiff-
nesses are k; = 2k, = 2000 N/m. The modal damping ratios for all modes

are { = 0.05.

e Set up the total mass matrix [M]

o Set up the total stiffness matrix [K]

e Set up the submatrices [M, ], [M,,], [M,,] = [M,;]"

e Set up the submatrices [K;;], [K,,], [K;] = [Kb,.]T

o C(Calculate eigenvalues and associated eigenvectors from eigenvalue
problem ([K;]- wfk[Mii]){(bik}

e Set up the modal matrix [®;]

e (Calculate the constraint modes [®,]
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e Calculate vector {7} = {Z(®)}¢*", (8.30)
e (Calculate the absolute acceleration

{i} = {X(@)}¢"= {Z(0)} +{X:})™, (8.31)
o Calculate directly the absolute acceleration {x} = {)Z(m)}ej (841

8.3.3 Problem 3

Solve the previous problem by replacing the mass m, by a large mass

M, = 10° kg and apply a force F, at x,, which is F, = M,e”’", as illus-
trated in Fig. 8.9.

———%xl X1 X1
Fy
i A s A
k, k

Fig. 8.9. 3 dofs linear dynamic system

The masses are m, = m; = 1 kg and the stiffnesses are k, = 2k, = 2000

N/m]. The modal damping ratios for all elastic modes are { = 0.05.
Use the MDM method!




9 Transient-Response Analysis

9.1 Introduction

Transient-response analysis is the solution of a linear sdof or linear mdof
system in the time domain. For linear mdof dynamic systems with the aid of
the modal superposition the mdof system can be broken down into a series
of uncoupled sdof dynamic systems. For a very few cases the analytical
solution of the second-order differential equation, in the time domain, may
be obtained and numerical methods are needed to solve the sdof and the
mdof dynamic systems. Often, the numerical solution schemes are time-
integration methods. The time-integration methods may have fixed or non-
fixed (sliding) time increments per time integration step, and solve the
equation of motion numerically for every time step, taking into account the
initial values either for sdof or mdof dynamic systems. The sdof dynamic
system may be written as

F(1)

X(t) + 28w, x(1) + 02x(1) = = = (o). 9.1)

The linear mdof dynamic systems is represented by the following matrix
equations of motion

[MI{x(0)} +[CHx()} + [KI{x(1)} = {F(1)}, 9.2)
the coupled linear equations can be decoupled using the mode displacement
method (MDM) or mode superposition method. The physical displacement
vector x(t) is expressed as follows

x() = [@{n(n},
with
e {n(¢)}the vector of generalised coordinates
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The modal matrix [®] = [¢}, 0, .....,0,] has the following orthogonality
properties with respect to the mass matrix and the stiffness matrix
[@1"[MI[®] = (m) and [®][KI[®] = (w,m)
e (m) the diagonal matrix of generalised or modal masses
. (mim) the diagonal matrix of the eigenvalues multiplied by the gener-
alised mass

Making use of the orthogonality properties of the modal matrix, the
equations of motion are expressed in the generalised coordinates, general-
ised masses, eigenvalues and generalised forces

(mYTAO} + ()N} + (@;m) (D} = 1),

with

e f(r) the vector of generalised forces.

e (c) the diagonal matrix of the generalised damping. This means the
damping matrix [C] consists of proportional damping. In general
we will add modal viscous damping to the uncoupled equations of
motion of the generalised coordinates, ;Cli = 2G,0;,

1

¢, = {q)i}T[C]{q)i} on an ad hoc basis.

* m = {¢,.}T[M]{¢,.} the generalised mass associated with mode {¢,} .

[ ] Ciz

Ci

2, Jk;m;

o k = {0,}7[KI1{0,} = o m, the generalised stiffness.

the modal damping ratio.

e o the eigenvalue of the eigenvalue problem

(IK1- o} [M1){0,} = {0}

Finally, the uncoupled equations of motion for the generalised coordi-
nates enforced with the generalised forces become

{03 {F(1)}
m.

1

Mi(6) + 24,00 (0) + 0:n.(f) = = £(1) ,i=12,... 9.3)

If the damped natural (circular) frequency ®,; (rad/s) is defined as

g = 0;4/1- Cf ,
then the theoretical solutions of (9.3) are



9.2 Numerical Time Integration 151

_C(’),‘t Ci .
N (1) = M€ cosmy;t + sin,;t
J1-g

. t
_§0)it Sln(Dd,-t J _gm‘csln(l)dl
— + e

+Nioe f(t— t)dt, 9.4

@y; 0
with initial conditions
-1
o {n,} = ([2]'[®]) [®]{x,} and
. -1 .

o {No} = ([R)[@]) [@]{x}

In most cases no closed form solution of (9.4) exists and therefore we
will solve (9.1), or (9.2) or (9.3) numerically. Many numerical time integra-
tion methods are described in the literature, e.g. [Abramowitz 70, Babuska

66, Chopra 95, Chung 93, Dokainish 89, Ebeling 97, Hughes 83, Kreyszig
93, Petyt 90, Pilkey 94, Schwarz 89, Subbraraj 89, Wood 90].

9.2 Numerical Time Integration

We define a series of time steps:
ty =0, t; = At, t, = 2At,...,t,_, = (n—1)At, t, = nAt. 9.5)
The displacement vector {d,}, the velocity vector {v,} and the accelera-

tion vector {a,}are approximations of {x(z,)}, {x(z,)} and {x(z,)},
respectively, conform to (9.1).

9.2.1 Discrete Solution Convolution Integral

The closed form solution of (9.1), with the initial conditions x(0) = x, and

x(0) = v,, is more or less illustrated in (9.4)

5 sin(odt)
J1-¢

. t
_ga)"tSln O)dt _C‘D 'cSlIl O)d't
+ve —+

Wy

Lo,
x(t) = x4e ¢ [coswdt+

t-1)d 9.6
e, T ©6)

The damped natural (circular) frequency o, (rad/s) is defined as
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oy = o41-8.

The last part in the right-hand side of (9.6) is called the convolution integral

-Lw,t Sina)dT

with the impulse response function h(t) = e and the external

d
!
force F(t-1), viz. J‘ h(t)F(t-1)dt. Assuming zero initial condition the
0
solution of (9.1) can be written as
1
x(t) = j h(t)F(t - T)dr. ©.7)
0
The final time ¢ and the running time t are expressed as follows

t=1=1=jAr (see also (9.5)). The convolution integral in (9.7) will
approximated by a summation [Meirovitch 97]

t t j
x(t) = j h(T)F(t-1)dt = j h(t—-T)F(t)dt = 2 Ath{(j - k)At}F(kAt) 9.8)
0 0 i=0
Jj J
d, = ZAth{(j—k)At}F(kAt) = ZAthj_ka. 9.9)
k=0 k=0
For example,
. dy
[ ] ] = 0 N A_[ = hOFO
. d,
[ ] J:l;Zt=h1F0+h0F1

. d
e j=n ;_X'; = h,Fy+h, (Fi+..+hF,_ +hyF,
It is clear that the number of operations increases with each sampling z,,.

The numerical solution of the convolution integral must be placed in the
area of the academic solutions and is not very practical for real-life prob-
lems. It is better to apply recurrence-matrix methods, for which the last
solution {x,,,} is only dependent upon the penultimate solution {x,},

hence

{x,:1} = {x(t+[n+1]1AD}= [A,1{x,} = [A,{x(t+nAr)}, (9.10)
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where the matrix [A,] is called the amplification matrix. For linear systems
the recurrent relation in (9.1 9) can be written as

I

{xn+1} = [An]{xn}
with
o [A]l=1[A4,_1] = ... = [A,] = [A,] = [A]

[A,1[A,_1]..[A]{x,} = [A]"{x,}, 9.11)

9.2.2 Explicit Time-Integration Method

The explicit time-integration method is the solution of equation(s) of
motion at time ¢+ At and the solution is obtained by considering the equi-
librium conditions at time ¢, and such integration schemes do not require
the inversion of the stiffness matrix in the step-by-step solution. Hence, the
method requires no storage of matrices if the diagonal (lumped or general-
ised masses) mass matrix is used. The explicit methods are conditionally
stable and require small time steps to be employed to insure stability.
In the next section the following explicit time-integration methods will
be discussed:
o the central difference method
¢ the Runge—Kutta methods (for first- and second-order differential equa-
tions)

9.2.3 Implicit Time-Integration Methods

In the implicit time-integration methods the equations for the displacements

at the current time step involve the velocities and accelerations at the cur-

rent step itself, ¢+ Ar. Hence the determination of the displacements at

t+ At involves the solution of the structural stiffness matrix at that time

step. However, many implicit methods are unconditionally stable for linear

analysis and maximum time step length. In the next section the following

implicit time-integration methods will be discussed:

¢ the Houbolt method

e the Wilson-6 method

o the Newmark method (explicit or implicit depending on the choice of
the parameters o, y and B)

9.2.4 Stability

The difference equation
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{xp1} = [AHx,} (9.12)

is [Strang 88]
e stable if all eigenvalues satisfy |A] < 1
e neutrally stable if some |A|= 1 and the other|A| <1

e unstable if at least one eigenvalue has |A,| > 1

The matrix [A] is called the amplification matrix.

In the case of unconditionally stable integration methods the solution
remains bounded for any time step At. For conditionally stable integration
methods the solution remains bounded only if At is smaller than or equal to
a certain critical value At .

9.3 Explicit Time-Integration

In this section the following explicit time integration methods will be

reviewed:

¢ the central difference method

¢ the Runge—Kutta methods (for first- and second-order differential equa-
tions)

9.3.1 Central Difference Method

This method is based on the finite difference approximation, [Chopra 95,
Pilkey 94], of the time derivatives displacement. The central difference
method is one of the most widely used among explicit techniques in large-
scale structural dynamics programs.

The time step is A¢. The central difference expressions for the velocity

x(t) and the acceleration x(¢) at time ¢ are
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t—At t t+ At

Fig. 9.1. Illustration central difference method

x(t+AnD-x(t=A1) _ d,1—d,_y

x(t) = AL AL =v,, 9.13)
and
. 1 . 1
- x(t+ EAt)_x(t— EAt) o4
x(t) = A7 , 9.14)
or
. - _ d ,,-2d +d
i) = x(t+At) 2x(t2)+x(t At) _ dnsn nt o1 _ a,. 9.15)

At N
The approximations of the velocity is denoted with v,, the acceleration
with a, and the displacement d, . Equations (9.13) and (9.14) are more or

less illustrated in Fig. 9.1. In vector notation we may write

{dyy 1} ={d, 1}

v} = o (9.16)

and

{dn+1} _Z{dn} + {dn—l}
AP '

{a,} = (9.17)

The equation of motion for the time ¢ = nAt is

(MHa,}+[Cl{v,} +[KH{d,} = {F,} (9.18)

with the initial conditions

{do} = {x(0)} 9.19)

(9.20)
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{ap} = M) [{F(0)} - [CI{vo} - [K)]{dy}. 9:21)

From (9.16) and (9.17) substituted into (9.18) we can derive the following
equation

(—[M]+—[C]){d,,+1} = {F,}

2At
2
S EAR (LU V) (TS ©22)
From (9.16) and (9.17) we can derive the following equation
AF
{dn—l} = {dn}_At{vn}-FT{an}' (9.23)
Thus for n = 0
Af
{d,} = {do}—At{Vo}"'?{ao}- (9.24)

With use of (9.24) we are able to start the recurrence procedure of the cen-
tral difference method.

The central difference method is very efficient when the mass matrix
[M] is a lumped (diagonal) mass matrix and the damping matrix [C] is
diagonal too. This is the case when the modal displacement method will be
applied (see (9.3))

The numerical process of the central difference method will be stable for

[Dokainish 89, Chopra 95]. The

time steps smaller than Az <

max fmax

truncation error is of O(At“) .

9.3.2 Runge—Kutta Formulae for First-Order Differential Equations

The classical fourth-order Runge—Kutta method [Abramowitz 70, Babuska
66, Dokainish 89, Kreyszig 93, Schwarz 89] has long been popular and is
often recommended for accurate numerical computations of solutions for
ordinary differential equations. The Runge—Kutta formulas are written as

Y = fxy) ,y(x,) =y, (9.25)
X, 1 = X, +h (9.26)

Vg =wathod(x, y, h) 9.27)
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OAx, ¥, h) = wik; +woky + wiks + wyky,
with
® ki = flx,y,)
® ky = flx,+ 0,k y,+B, hky)
® k3 = flx,+0sh, y, + B 1hk; + B3 5hk;)
o ky = flx,+0y4h,y,+ By bk + By sk, + By 3hk;)

157

(9.28)

In Table 9.1 the constants for three different Runge—Kutta methods are

given. The truncation error is of O(A?).

The Runge—Kutta time-integration method is a one-step and a four-stage

method.

Table 9.1. Family of Runge-Kutta integration methods

Three over eight
Standard Runge-  Runge-Kutta

Coefficients Kutta Formula formula Gill’s formula
Wi 1 1 1
6 8 6
W 1 3 1-4)
3 8 3 ﬁ
Wy 1 3 (1)
3 8 1+ ﬁ
W4 1 1 1
6 8 6
o 1 1 1
2 3 2
03 1 2 1
2 3 2
Oy 1 1 1
1
2




158 9 Transient-Response Analysis

Table 9.1. Family of Runge-Kutta integration methods (Continued)

Three over eight
Standard Runge- Runge—Kutta

Coefficients Kutta Formula formula Gill’s formula
By, 1 1 L
2 J2
Ba. 1 0 1 0
B4, 2 0 -1 _i
J2
B4, 3 1 1 1+ L
J2

The equation of motion of an sdof dynamic system has been derived in a

previous chapter. We assume underdamped damping ratio ({<1) charac-
teristics.

(1) + 200,51 (1) + 02x(F) = ’ir(ni) = A1), (9.29)

We will now introduce the space state variables y(¢)

y(t) = { i) } = { x(1) } (9.30)
y2(9) x(1)
Rearranging (9.29), we get the space state equations of motion
ORI { () }+{ 0 } ©30)
ya(t) —o; —280,| L y2() f(0)
In the case of (9.2) (9.31) can be written as
Lt i) o
X ~[MT[C] -[MT[K]| L x F

and can be solved by the Runge-Kutta time integration method.
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b =[ [‘H [{]1 ] ‘ +[M]_1{O}. (9.33)
y2 -[M] '[C] -[M] [K]]| y2 F

9.3.3 Runge-Kutta-Nystrom Method for S-O Differential Equations

The Runge—Kutta—Nystrom method is a fourth-order method and is an
extension to the general Runge—Kutta methods for first-order differential
equations as discussed in the previous section [Abramowitz 70, Kreyszig
93]. The procedure is given here.

Y o= fy,y), y(x,) =y, and y'(x,) = ¥, (9.34)
Xn+1 = xn+h (935)
Yaut = Yt 30k + 2k + 2k 4 K) (9.36)
Co 1
Yn+1 = y,,+h(y,,+ §(k1 +ky+ kg)), 9.37)

1 1
b kl = Ehf(-xmymyn)

1, 1
b K_Eh(y"+2k1)

* Lk, = %h xn+%h,yn+K,y'n+kl)

e ky = %h xn+%h’yn+K’yln+k2)

L = h(y,+k;)

k, = %hf(xn thy + Ly, +2k)

9.4 Implicit Time Integration

In this section the following implicit time-integration methods will be
described:
¢ the Houbolt method
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e the Wilson-6 method
e Newmark-beta method (explicit or implicit depending on the choice of
the parameters o, y and B)

9.4.1 Houbolt Method

The Houbolt recurrence-matrix solution, to calculate dynamic responses of
dynamic systems is proposed in [Houbolt 50, Subbaraj 89, Pilkey 94]. For
an sdof system the equation of motion is given by (9.29)

EQ@) _

e (D).

To solve this equation Houbolt proposed the following difference equations
for the velocity x, and the acceleration x,. The approximations of the

velocity is denoted with v,, the acceleration with a, and the displacement

x(t) + 28w, x(1) + wix(t) =

d, . The numerical solution for the velocity is

=L

= ey l11d,~18d,_; +9d, ,-2d, ], (9.38)

Vn

and the numerical solution of the acceleration can be obtained from

a, = Altz[zd,,—sd,,_1+4dn_2—dn_3]. (9.39)

The substitution of (9.38) and (9.39) into (9.29) results in the following
relation to solve the displacement d, , ,

F
an+1+2cwnvn+l+widn+l = :r:l =Jn+1o (9.40)
or
2 zzcmn 2 5 6Cmn
L -2 d = =
[At2+ 6At +0‘)n:| n+1 fn+l+[At2+ At :ldn
4 3o, 1 2w,
_[A_,2+ At }d”‘”[A_ﬁJ' 341 }d"-z’ O41)

or (9.41) written in a shorter way
kn+ 1dn+1 = fn+1 + kndn_kn— ldn—l + kn—2dn—2 . (942)
In matrix notation

2 11
(5001 + gl €1+ K1 )it} = (F, )
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5 3 4 3
+ (A—tz[M] + A_t[C]){d”}—(A_f[M] + Q-A—t[C]){dn- 1}

1 1
+(A_I2[M]+3_At[c]){d"“2} , (9.43)

or (9.43) written in a more compact way
(Ko Hdyii} = {F, Y+ K14, K, 1{d,_,} +[K,_,l{d,_,}. (944)

To solve the initial-value problem Houbolt also proposed the following
relations for v, and a,

1

v = grl2d,, 4 3d,~6d,_;+2d, ;] (9.45)
a, = Aiz[dm—zdn +4d,_]. (9.46)
t

The initial values are defined as; d, = x,, vy = xo = v, and the associ-

ated acceleration can be obtained from (9.29) and is
ay = fo—28w,v, - (Dixo . (9.47)

For n = 0 the displacements d_; and d_, can be expressed in d,, d,, v
and q,, using (9.45) and (9.46), and become

o

d_, = 2d,-d, +Afa, (9.48)

d_, = 9d,-8d, + 6Atv, + 6Ara,. (9.49)

The starting point of the recurrence solution is n = 0. The values of d_,

and d_, are known and expressed in the initial conditions, d, and d,, thus

(9.41) becomes
(kyo1—ky_y+ 8k, _5)dy = fi+ (k,~2k,_, + %%, _,)d,

— (k,_, —6k,_,)Af'ay+ 6Atk, ,v, (9.50)
or in matrix notation
(1K, 1=K, _ 1+ 8[K, _,D{d,} = {f;} + ((K,]-2[K,_ 1+ 9K, ,]){d}
~([K,_,1-6[K,_,))Af{ay} + 6AtK, ,{v,}. (9.51)

Nowswermayproceediwithitherrecurrence solution for d, or {d,} and so on
with (9.42) or (9.44).
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The Houbolt method, which is an implicit method, is unconditionally sta-
ble, so there is no critical time step limit A¢. The most significant drawback
associated with the Houbolt integrator is the algoritmic damping, which is
inherent in the numerical procedure, and is introduced into the response
when large time steps are used. In linear problems this damping can cause
the transient response to decay so severely that the static response is

obtained, [Subbraraj 89]. The truncation error is of 0(At4) .

9.4.2 Wilson-theta Method
The Wilson-6 method is also discussed in [Pilkey 94, Subbraraj 89].
For any 1 so that <1<t +6Ar we have assuming a linear acceleration

Xtvr = X+ G_At(xt+9At —X1). (9.52)

Equation (9.52) is illustrated in Fig. 9.2.

t t+1 t+ 0At

Fig. 9.2. Tllustration calculation x(¢ + T)

The velocity x,.. can be obtained by integrating (9.52) with respect to time

T 2
X4t = Joxt+ada =X+xT+ m(xmem—xt), (9.53)
and the displacement x, . is obtained by integrating (9.53) again with
respect to time

T - 2 3

. . xtT T . .
Xipqp = .[ XevodO = X, + X T+ —— + ——(Xrs0ar— Xy) . (9.54)
0 2 60At

If we substitute for © = 0Az into (9.53) and (9.54) the result will be
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. . BAr .. .
Voo™ Xt+6ar = Xt "2_(xt+eAt+xz), (9.55)

and

(9At)2

6

d +0= Xrroar = X +xteAt + (it+eAt + 2x,) . (9.56)

Equation (9.2) can be written as

MH{a,, o} +[CHV, 0} +[KHd, o} = {F(1,,9)}, 9:57)

with initial conditions

{do} = {x(0)} (9.58)

T} = 10)} 9.59)

fag} = IMT"[{F(0)} ~[Cl{vo} ~ [K11{dp) 9.60)
[F(y )} = LF ()} +OLLF (1, )}~ LF (1)} ©61)
el = Dk + B a0} +a,) 962)
(ool = (41 r0aiind + @00 r2gay). 06

For linear structures the Wilson-8 method is unconditionally stable for
6>1.39, [Subbraraj 89]. If we substitute (9.61), (9.62) and (9.63) into

(9.60) the accelerations {a, .} Will be solved.
2
(11+ 2101+ R K a3 = {F) +0ULF, 1} -,

OAt

2
KD, -1+ ok o e+ Ok o) . 060

The accelerations, velocities and displacements can now be solved using
(9.52), (9.53) and (9.54), respectively, with © = At

{a, .1} = {an}+é[{an+e}—{a,,}] (9.65)

Dnetd = 001+ @, 3004 204, 0} - {a,)] 9.66)

2 A 2
5 +—6i9[{an+e}-{an}]. (9.67)
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We may rewrite (9.63) such that

6
{a,40} = m({dﬂe}—{d,,}) eAt{v 1-2{a,}. (9.68)

Substituting (9.68) in (9.62) we obtain

Do) = ga(idhaot - 14, 0-207,1 - 224a,}. 9.69)

If we substitute (9.68), (9.69) and (9.63) into (9.60) the displacements
{d, .o} are solved.

( [C]+[K1){d,,+e}-{F}+9({F,,+1} {F,})
(0A1)’
0At
+((9 )[M]+9_At[c]){d} (gat+21C1 v, + (20011 + 251 Jea,}
, (9.70)
With (9.68) substituted into (9.65) we obtain
(a1} = 5 5o}~ {dD e {v}+(1——){an}. ©.71)

Using (9.63) with 8 = 1 the velocities at time ¢, ; can be solved

ot} = (v} + SHa, 1+ e, 1. ©.72)

Using (9.62) with 6 = 1 the displacements at time ¢, ,; can be solved

2
{d,.1} = {d,,}+{vn}At+é—6£-[{an+1}+2{a"}]. (9.73)

9.4.3 Newmark-beta Method
The Newmark-beta method, is described in [Belytschko 00, Hughes 83,
Pilkey 94, Subbraraj 89]. The equations of motion of a damped mdof sys-

tem are given by (9.1) and/or (9.3). The basic form of the Newmark-beta
method is given by

{d,,} = {d}+{v, }Az+[( B){a }+B{an+1}] (9.74)

aait = b+ I(-P{a,} +v{a,, }]Ar. 9.75)
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We will rearrange (9.74) as

- -
(o} = =5} - 14,01~ satt-(z5- et ©76)

Substituting (9.76) into (9.75) we obtain
S _
i) = gl -+ (1B 1)aday. 077

The equation of motion for time ¢ = (n+ 1)At is

(MHa, 1} +[CHv, 1} +[KHd, 0} = {F ) (9.78)

with initial conditions

{do} = {x(0)} (9.79)

{vo} = {x(0)} (9.80)

{ap} = [MI"'[{F(0)} - [Cl{vo} - [K1}{d,}, (9.81)

in which n = 0,1, .., N-1 is the number of time steps and A is the time

step.
The acceleration vector {a,,;} can be solved if (9.74) and (9.75) are sub-
stituted into (9.78) using the appropriate initial conditions or start values.

(IM] +YA{[C] + BAC[K]){a,,,} = {F,,,}

~ [K1{d,} - ([C] + At[K]){v,} - (( 1-Y)AL[C] + G - B)Atz[ K]){an} . 982)
If we substitute (9.76) and (9.77) into (9.78) we can solve {d, .}
1
(a1 Bt + (K Jidu} = ()

L1+ 2 1e1)id, + (et + (- 1)ien v,
pal pAt a0+

((2% - 1)[M] + At( 6 1)[C]){an} . (9.83)

The Newmark-beta method is unconditionally stable for a linear system
when

o'yz

DN | =
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B>(21+1)2
=16

Positive algoritmic damping is introduced if y> 0.5 and negative algorit-
mic damping leading to an unbounded response if y<0.5. Thus, in most
applications y= 0.5 is used. If y>0.5 and B<% the following condition
must be met

1
(r-05)+[1-p+C(y-05)):
0r<Q . = ,

n crit
(G-#)
where { is the damping ratio. The damping ratio may be obtained assuming
(2¢,m) = [®)'[C][®] with [®] as the modal base.

Variations of the parameters y and B will lead to other well-known time
integrators very much related to the Newmark-beta method [Subbraraj 89].

Table 9.2. Properties of Newmark-beta method

Order of
Method Type Y B Stability accuracy
Average accelera- Implicit 0.5 0.25  unconditional 2
. . O(AY)
tion (trapezoidal
rule)

Linear accelerati Implicit 0.5 1/6 2
i eration mplici Q. = 2ﬁ 0P

Central difference® ~ Explicit 0.5 0 Q. =2 O(Atz)

a. The acceleration vector {a, , ;} will be solved instead of the displacement

vector {d, ,}.

9.4.4 The Hughes, Hilber and Taylor (HHT) alpha-Method

The HHT method, the o-method, is described in [Belytschko 00]. The
HHT method is based on the Newmark-beta method. The equations of
motion of a damped mdof system are given by (9.1) and/or (9.3). The HHT
method is a one-step, three-stage, numerically dissipative integration
method: The HHT method improves numerical dissipation for high-fre-
quencies without degrading the accuracy as much and combines minimum
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low-frequency dissipation with high- frequency dissipation. The basic form
of the HHT-o. method is given by

(d,}={d}+{v,)Ar+ [G - B){an} +Bla,, 1}}3:2 (9.84)

usidt = v+ A -n{a,} +¥{a,, At (9.85)
(MH{a, }+[CHv,, o} +[KHd, o} = {F(,, )} (9.86)
{do} = {x(0)} (9.87)
{vo} = {x(0)} (9.88)
{ag} = M1 [{F(0)} - [Cl{vo} - [K11{d,}, (9.89)
where
{d,.o} = (1+a){d,, }-o{d,} (9.90)
st = A+ a){v,, }-0f{v,} (9.91)
{tiio} = A+ o){t,, }-0{r,} (9.92)
{F(t,, )} = (1 +0){F(t,,)}-a{F(1,)}, 9.93)
in which n = 0,1, ..., N-1 is the number of time steps and At is the time
step.
The HHT method is unconditionally stable for a linear system when
1
® (e |:—§,O:l
. _1-20
2
2
¢ B= (1—40()

9.4.5 The Wood, Bossak and Zienkiewicz (WBZ) alpha-Method

The WBZ method, the o -method, is described in [Wood 90]. This method
is based on the Newmark-beta method. The equations of motion of a
damped mdof system are given by (9.1) and/or (9.3). The WBZ method is a
one-step;»three-stage;-numericallydissipative integration method. The
WBZ method improves numerical dissipation for high-frequencies without
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degrading the accuracy as much. It combines minimum low-frequency dis-
sipation with high-frequency dissipation. The basic form of the WBZ-a
method is given by

(i} = 141+ 01004 [(3-Bla) +Bla,, Y |ar ©94)
{Vaird = v d + (A -1{a,} +1{a,, }]At (9.95)
(MU a,, o} +[CHV,i P+ [KHd, 1} = {F(, 000 (9.96)
{do} = {x(0)} (9.97)
{vo} = {x(0)} (9.98)
{ag} = [M]"'[{F(0)} - [C){vo} - [KI}{d,}, (9.99)
where
{a,.0,} = A1-0p){a,, }+0og{a,}, (9.100)
in which n = 0,1, .., N-1 is the number of time steps and Ar is the time
’Sl“tl?e).WBZ method is unconditionally stable for a linear system when
® oge [—% O]
C oy 22
. p- oo

9.4.6 The Generalised—alpha Algorithm

The generalised-o algorithm is described in [Chung 93]. The equations of
motion of a damped mdof system are given by (9.1) and or (9.3). The gen-
eralised-a algorithm is a one-step, three-stage, numerically dissipative
integration method. The algorithm combines minimum low-frequency dis-
sipation with high-frequency dissipation. The time integration is uncondi-
tionally stable and possesses second order accuracy. The basic form of the
generalised-a algorithm is given by

{d, .} = {d,}+{v,}Ar+ [G 1 ﬁ){a”} +Bla,, [}]Atz (9.101)
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o1y = v+ 1A -7{a,} +Y{a,, }]At (9.102)

(MHa, 410, +[CHVy 10} +[KH{dy 10} = {F(t,41_4)}  (9.103)

{do} = {x(0)} (9.104)
{vo} = {x(0)} (9.105)
{ap} = [MI'[{F(0)} - [Cl{vo} - [K1){d,} . (9.106)
where
{dysiot = (1-0p{d,, } +odd,} (9.107)
Dnsioad = Q-o){v, 1} +o{v,} (9.108)
{a,,1 0, = A-o,){a,, } +o,{a,} (9.109)
{thi1 o} = (L-op{t, F+oufr,} (9.110)
{F(tys1-0)} = (L-0){F(1,, 1)} + 0 {F(1,)}, (9.111)

in which n = 0,1, .., N~ 1 are the number of time steps and At is the time
step.
The generalised-o algorithm is unconditionally stable for a linear system
when

N =

® Q,S0s

1,1
e B2 2t i(af_ o,)
The generalised-a algorithm is second-order accurate, providing

° v= %—am+af

9.5 Piecewise Linear Method

In the Chap. "shock-response spectrum" the piecewise linear method is
described in great detail to calculate the shock response spectrum of time
responses. This is a time integrator only for an sdof dynamic system. The
piecewise linear method is based on theoretical solution of the equation of
motionyhowever;the.applied-loads.are linearised in the time frame of inter-
est [Nigam 68, Ebeling 97, Kelly 69]
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9.6 Problems

9.6.1 Problem 1

Look at the coupled pendulum shown in Fig. 9.3 [Hairer 92]. All initial val-
ues are equal to zero at + = 0. The first pendulum is pushed into movement
by a force f(t) (N).

Fig. 9.3. Coupled pendulum

00141 —(1-p> lt=1I<1

0 otherwise

f() =

The nonlinear equations of motion for both masses are:
2

o, = BN kr Lo J)
?1 I - ?(sm(pl s1n(p2)c05(p1+mlLl
: 2
. gsin k . .
02 = _L_(Pz_ 4 5(sin@, — sin@, ) cos @,
2 mylL;
. 2 1
gsm(pl+k;(siH — sin@,)cos
i L, mlLf 0, () 9, f(1)
=- +y mil
. . 2
sin
2 8509, | kr (sing, - sing,)cos @, 0
L, 2
myL, ]

The linearised equations of motion around ¢, = ¢, = 0 become
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2
- 891 kr f(1)
P =T (@ -9+
L, mlLf b mL,
2
. 89, &k
(P2=—'Z—2——"—2((P2—(P1)

2 . 2 2
mLy 0 |} @ |, |emLi+kr™  —kr { @1 } - { L) }.(9.112)
0 mLl| ¢ —kr* gm,L, +kr*|L 9 0

We choose the following somewhat modified parameters, [Hairer 93],
Li=L,=1mm =1kg m, =09 kg, r=01m,k=2N/m,g=1

m/s?, tona = 600 s.

The linearised equations of motion are solved using the Wilson-6 method,
with 8 = 1.4 and Ar = 0.05 s.

The solutions for ¢, and ¢, are shown in Fig. 9.4 and in Fig. 9.5.

Wilsor-theta time integration

I 1 1 1 1 1 1 I 1
0 50 100 150 200 250 300 350 400 450 500
time (s)
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¢, (rad)

0 50 100 150 200 250 300 350 400 450 500
time (s}

Fig. 9.5. Response @,

Solve (9.112) with the central difference method and the generalised o
algorithm as described in previous sections.

9.6.2 Problem 2

Solve (9.112) numerically using the Runge—Kutta methods for the first-
order and the second-order differential equation.

9.6.3 Problem 3

Solve (9.112) numerically using the Houbolt method.




10 Shock-Response Spectrum

10.1 Introduction

Separation of stages, the separation of the spacecraft from the last stage of
the launch vehicle will induce very short duration loads in the internal
structure of the spacecraft, the so-called shockloads. The duration of the
shockload is, in general, very short with respect to the duration associated
with the fundamental natural frequencies of the loaded dynamic mechanical
system.

The effects of the shock loads are generally depicted in a shock-response
spectrum (SRS). The SRS is essentially a plot that shows the responses of a
number of single degree of freedom (sdof) systems to an excitation. The
excitation is usually an acceleration—time history.

A SRS is generated by calculating the maximum response of a sdof sys-
tem to a particular base transient excitation. Many sdof systems tuned to a
range of natural frequencies are assessed using the same input-time history.
A damping value must be selected in the analysis. A damping ratio of
€ = 0.05, Q = 10, is commonly used. The final plot, the SRS, looks like a
frequency-domain plot. It shows the largest response encountered for a par-
ticular sdof system anywhere within the analysed time. Thus the SRS pro-
vides an estimate of the response of an actual product and its various
components to a given transient input (i.e. shock pulse) [Grygier 97].

A typical example of a time-history acceleration and associated SRS as
illustrated in Fig. 10.1 and Fig. 10.2, are extracted from NASA-STD-7003
[Mulville 99].

In this chapter, the response of an sdof system, due to enforced accelera-
tion, will be reviewed. Furthermore the calculation of SRSs will be dis-
cussed in detail. The maximum values occurring in time histories will be
compared with the SRS approach and finally it will be shown how an exist-
ing SRS can be matched (with synthesised decaying sinusoids).
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A
s =2

Instantaneous Acceleration (g)

2
Time (s)

Fig. 10.1. Typical pyroshock acceleration time-history [Mulville 99]

SRS acceleration (g)
D/ i)

2

10! 102 103 104
Natural frequency (Hz)

Fig. 10.2. Typical pyroschock maximum shock response spectrum (SRS)
[Mulville 99]

10.2 Enforced Acceleration

An sdof system with a discrete mass m, a damper element ¢ and a spring
element k is placed on a moving base that is accelerated with an accelera-

of the mass is x(¢). We introduce the
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natural (circular) frequency w,= A/z , the damped circular frequency
m

oy = o,4/1-¢, the critical damping constant c,;, = 2J/km and the damp-

ing ratio { = CL . The amplification factor is defined as Q = 2—15 where
crit

Q = 10 is generally assumed.

L é L{_I(T x(1)

T u(t)
moving base

Fig. 10.3. Enforced acceleration on a damped sdof system

We introduce a relative motion z(r), which is the displacement of the mass
with respect to the base. The relative displacement is

2(t) = x(£) - u(t). (10.1)

The equation of motion for the relative motion z(r) is

(1) + 28,3 (8) + or2(t) = —i(1). (10.2)

The enforced acceleration of the sdof system is transformed into an external
force. The absolute displacement x(#) can be calculated with

(1) = 20 +i(t) = 2L, 2(1)-wl(t) . (10.3)

The solution of (10.2), taking the initial condition with respect to displace-
ment z(0) and velocity z(0) into account, is

~Co,t g .
z(t) = z(0)e (cosmdt+ sm(odtJ
J1-¢

. t .
- sSIn®,t — SIN®;T..
C“’"’——"—-j P e LR (10.4)
4 0 g

+2(0)e

For SRS calculations z(0) = z(0) = 0, hence
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t . t .
_ SIn®;T .. - —o)SInW,(t—7T)..
()= _j P i LT —j LSO 10.5)
0 Oq 0 ®q

After differentiation of (10.5) with respect to time [Kelly 69] the relative
velocity z(t) becomes

t

3()= —_[ e

0

-Lay(r-1)

cos(my(t—1))u(t)dt - {w,z(1) . (10.6)

The absolute acceleration x(¢) can be obtained by applying (10.3) [Kelly
69]

50 = 280, [ ¢ cos(wy(t- iRt + 0,28~ Da(n).  (10.7)
0

The maximum acceleration x(¢) can be calculated by inserting the natural
frequency o, = 2xnf, (rad/s) of the sdof system for every natural frequency.

The maximum acceleration x(¢) will be plotted against the number of
cycles per second f, (Hz). This plot is called the shock-response spectrum

(SRS) of the base excitation u(t) .

10.3 Numerical Calculation of the SRS, the Piecewise
Exact Method '

In this section, two similar methods of calculating numerically transient
responses of sdof dynamic systems, are discussed:

1. A method as discussed in [Nigam 68, Ebeling 97]
2. A method as discussed by [Kelly 69]

In both methods the forcing function is assumed to vary linearly in a piece-
wise fashion and, based upon this assumption, an exact solution is deter-
mined.

The equation of relative z(¢) motion of the sdof dynamic system exposed

to a base acceleration u(t) is given by (10.2)
Z(1) + 2800,2(1) + w2() = —i(1).

The base acceleration u(r) is mostly given in a discrete form in a table;
acceleration versus time. We assume a linear variation of the acceleration
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between two time steps #; and #;, . The acceleration u(z;, ) is expressed
in terms of the acceleration u(#;) . The time increment is Af; = ;- #; and

the increment of the acceleration is Au(t;) = i(t;, ) - u(t)).

u(t)

Fig. 10.4. Linearisation numerical scheme of acceleration u(t)

The acceleration u(#;, ;) at the time #;, ; becomes

. o Au(r)
u(t) = u(tj)+thL(t—tj), IjSIStj+1. (10.8)

Equation (10.2) will be rewritten

.. . . Au(y;
z2(1) + 28w, z(1) + (Diz(t) = —u(tj)-——z—(th)(t- 1), 4SSt (10.9)
The solution of (10.9) is

2(t) = z(tj)e—cm"(t_t’)[coscod(t 1)+ —g—sincod(t - tj)J

J1-¢

. 1 .

. — —)SINM,(f—1; — —)SIw,(r—-7T) ..

ri)e " ’f’—g)(—h)—_[ et t)————:)(———)u(I)dt (10.10)
d t. d

J

The integral in (10.10) is given by [Kelly 69].

t .
_ —7)sSInw,(r—7T)..
¢ t)—d(—)u(’c)d‘t =
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_ —u(ztj)|:1 B e‘g“’"(’_tf)(cos(od(t— 1)+ A/%7?@103[1(’_ tj)ﬂ

(0]
At Lo, (-1, -
_ “(5))[1 2 (1= syt -1)

n
2 w —t.
(On n(t tj)

A.. . 2 ot
. u(t){(1_2§ )G r,)sinmd(t_,j)} (10.11)

ol [Oalt=1))

N . .
The state vector (z,z) at time ¢, can be expressed in the state vector

at time #; and the piecewise linear given base acceleration u at both #; and
t;,, [Nigam 68, Gupta 92, Ebeling 97],

2(t;4 1) () u(t))

) = [A | +[B] , (10.12)
Z(tj+l) Z(tj) l;(tj+1)
with
o [A] = ay
421 A7)
and
° [B] - bll le
b2y by

The absolute acceleration x(z;, ,) is given by (10.3)

5(t, 1) = 280,201, 1)-002(4, 1) (10.13)

With At; = t;, | —t;, the elements of the matrix [A] are

e-Cw,.Atj[-A/:g_—z sinw,At; + cos u)dAtj]
1-g

e-CmnAtj sin (DdAt!~

® ay

[ ] al2=




10.3 Numerical Calculation of the SRS, the Piecewise Exact Method 179

° a22 = e_cmnAtj[Cosa)dAtj_A[J;——z SlnwdAt])
1-¢

With At; = -t the elements of the matrix [B] are
sin® At
® b, = Cﬂ)At [ g _§_:| d [ 2¢ +—2:|COSOJdAt)— ?g
o, At ©p ] O (onAt o, AL

- —1)\sin® At
® b, =-e Sont ZC L d ZC COs W,AL; —Lz+—2§—
co,,At- @4 co At 0, o, At
® b, = _Cm A5 —C— S— cos (wgAf;)— —g—sma)dAt
a)At ®, /1— <

_e-C“’nA’f[_ZQ_ + lzjl(o)dsinmdAtj + Lo, cosmyAL) + 2

mBAt- [0} At;

n n=ry

. by T (zs;_(A _c_mAD

At f1_ Cz
P (——g—(mdsmmdAt + (o, cosmyAt, )) —1—
2L @A,

In [Gupta 92] the following expressions for b,, and b,, are given:

a;, -1

® by=-—F—-ap
0,Af;

® by =-by-ay

In [Kelly 69] a very similar numerical approach, as discussed by [Nigam
68, Gupta 92, Ebeling 97], is proposed

2tj41) = Biz(t) + Byz(t)) + Byu(1)) + ByAu() (10.14)
Z(;)f+ l) = B6Z(tj) + B7Z(tj) + Bsu.(tj) + BgAlI(t]) , (10.15)
with (10.13)

).c.(tj+ D= —2Cmné(tj+ 1)—miz(tj+ V)

where




180 10 Shock-Response Spectrum

o i) = iit;,,) - i(t)

Lo _At; .

® B =¢ S, J(A/—_g__—zsmmdAtﬁ coscodAtj)
1-¢

_Cm“Athin(DdAtj

e 7

e B =
2 o‘)d

1
e By=—(1-B)

n

- _ - sinw,At;
o B, = L1228 (1 0N 0se,Ar) — (1— 20 et R R
4 2 4=
o 0,At; 04At;

* BG = _mnBZ

-o,At;
e B, = ¢ = (CoswdAtj_J—_g_—sinwdAth

n 1"(.:2
B
° B8 = —az
n
B,-1
(] ‘B9 = 3
0,At;

For the calculation of the SRS the following parameters are important
[Assink 95]:

1. The damping ratio ¢ of the sdof dynamic system.

2. The number of sdof systems for which the maximum response is calcu-
lated.

3. The minimum time frame of the transient T, ;, (s). The minimum time

. . . 1 . .
frame is the maximum of either T.. > — or twice the maximum shock

mm—f
mij

time T 2 200k -

4. The time increment Ar must be less than 10% of the reciprocal value of
the maximum frequency f,,,. (Hz) involved in the calculation of the
0.1

max

SRS, At< . The minimum number of time steps n within the time

Tmin
At

frame T, is n =

- 1=,
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A half-sine pulse upase = 200sin7—;—t, (0<t<1) = 0.0005s and upse = O,

t<0, t>1 is applied to the base of series of sdof dynamic systems to calcu-
late the SRS of the HSP. The total time is f,, = 0.05 s and

0.1 0.1
= L - = —

At = 0.00001 a 30

0 = 10. The Kelly method is applied to obtain the SRS.

= 0.00003s. The damping ratio { = 0.05,

The calculated SRS (absolute acceleration) is illustrated in Fig. 10.5.

10.4 Response Analysis in Combination with
Shock-Response Spectra

A multi-dof linear system, excited with an acceleration uy,e at the base, is
represented by the equation

[M1{x} +[CI{x} + [K]{x} = {0}. (10.16)
The matrix equation for the relative displacement vector {z} = {x}-{u},
the relative velocities {z} = {x}-{u} and the relative acceleration

{z} = {x}-{u}, with respect to the base, can be written as

[MI{z} +[Cl{z} + [K1{z} = ~-IMI{T}upasc , (10.17)

with {T} the rigid-body vector with respect to the base.
From the undamped eigenvalue problem (10.17)

([K1-M[MD{;:} = {0}, (10.18)

the eigenvalues A; and associated modes {¢,} can be obtained and used for

the modal analysis (modal displacement method (MDM)) approach. We
assume

UM

{z} = [0}, 0p 05, ... 13 12} = [@]{n}, (10.19)
UE!

where
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e [®] the modal matrix.
e [n} the vector of generalised coordinates.

Shock Response Spectrum (SRS)
T T

250

n
8

150

Acceleration (g)

100} -

1
0 500 1000 1500 2000 2500 3000
Frequency (Hz)

Fig. 10.5. The SRS of a half-sine pulse (HSP) with amplitude A=200 g and a time
duration T = 0.0005 s

The modes are orthogonal with respect to the mass matrix [M] and the
stiffness matrix [K],

(@] [M][®] = (m), [®I[KI[®]= (Am) = (@m,). (10.20)

If we introduce the modal damping ¢; = 2{,m,; the equations of motion
expressed in the generalised coordinates become

ﬁ,' + 2Ci(0i1:\i + 0)1-21]1- = T Ubase = _F,‘il.base s (10~21)
(0,1 [M][9;]

with

e (, the modal damping ratio with respect to mode ‘7.

e o, the natural frequency corresponding with mode {¢,} .
e T, the modal participation factor.

Equation (10.21) is similar to (10.2). Equation (10.2) is applied to calcu-
late the maximum (peak) response of the sdof system to obtain the SRS cor-
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responding with the base acceleration up,e . The peak responses, or SRS of
the sdof dynamic systems as described by (10.21), will be a fraction T'; of

the base acceleration SRS of i, . The acceleration SRS of the generalised

coordinate 7; is given by

SRS(M;) = TSRS (tvase) - (10.22)

The modal contribution to the SRS of the physical degrees of freedom;
{z},{z},{z} become

SRS(Z, ®;) = {0;}SRS(M:), (10.23)
and the contribution to the SRS of the velocities

SRS(z, ®;) = %S(—T—]—) , (10.24)

1

and the contribution to the SRS of the displacement

{0:}SRS(n:)
—.

SRS(z, ®;) = (10.25)

®

The SRS of the absolute acceleration SRS(x) can be obtained in a similar
way as for the SRS for the relative acceleration SRS(z) .

The total SRS for the absolute acceleration is a particular summation
over all the modal contributions SRS(x, ®;) . In [Gupta 92, Haelsig 72] two
summation methods were discussed. The first one is an absolute summation
taking all modes into account

SRS(X) = Z|SRS(5E, o), (10.26)
i=1

and the second one is the square root of the summation of the squared val-
ues, the SRSS value

SRS(¥) = |Y {SRS(X, 0)} . (10.27)

i=1

A four mass-spring system with the discrete mass m = 5 kg, the spring
stiffnessykr=n1000000»N/mpanditherdamping ratio is { = 0.05 (Q = 10) is
illustrated in Fig. 10.6.
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Elxl
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X2

3

h
X4

T Ubase

Fig. 10.6. Four mass—spring—system

The base acceleration is:

1. A half-sine pulse upase = 200sin7—;—t, 0=t<t g and upse = O,

t<0,t>1 with T = 0.0005 s.

2. A Shock Response Spectrum based upon a HSP with an amplitude
A = 200 g, a time duration T = 0.0005 sand Q = 10.

For both cases the acceleration transient responses {x} and the SRS(x,f)
will be calculated and compared.

We will solve (10.17)

[M1{z} + [CI{z} + [K){z} = —[MI{T}upase
applying the modal displacement method (MDM) and taking all 4 modes
into account. The absolute displacement vector is {x} = {z}+ {u}, the
absolute velocity vector {x} = {z}+{u} and the absolute acceleration

vector {x} = {z} + {u} . To calculate the spring forces only the relative dis-
placement vector {z} is required. The force matrix [S] is defined as

1-10 0
(s]= k[0 2 20|

00 3 -3
0 4
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The forces in the springs are { F} = [S]1{z}.

The physical relative degrees of freedom {z} are transformed into the
generalised coordinates {n} using the modal matrix [®], thus
{z} = [®I{n}.

The stress modes can be calculated with

[®,] = [SI[P].
The decoupled equations of motion expressed in the generalised coordi-
nates {n} and adding the “ad hoc” modal damping ratio { become

) o {6} IMI{T}..
ni+25om +om; = T "o
{0, IM1{6,}

To solve the acceleration in the time domain, the Newmark-f method

[Wood 90] will be applied with B = 0.25 and y = 0.5.
2

Mhper = (1, + AR+ 201 2B) (i} + AP fi 1

ase = —Fiubase = f

(Mlnet = (NIt AL =P {0 0+ ArY{Ti }ns:
[D] = [1]+YAH{28,0) + BAL (@)

[DH{N}ns1 = {fhns1 = 2Go)AN 0+ A1 -1){N}A)
2
~(@i)(n},+ At} + 5-(1 - 2B) (i ).

Att =0, {n}h = {n(0)}
{ih = I - QGo){nh - (o) {n},
with the initial conditions
o {Mh = {NO)} = (@1 [®) [®1{2(0)}
o {n} = {NO)} = (@1'[D]) [®]"{z(0)}

The natural frequencies {f,} (Hz) and associated mode shapes [®] of the
dynamic system illustrated in Fig. 10.6 are

40.4 0.7766 —0.5978 0.1972 —0.0232
0.5261 0.4458 —0.6974 0.1950
03160 0.5785 0.4372 -0.6118|
2182 0.1420 0.3303 0.5325 0.7663

1 =1 %0 gy o) -
151.6

The stress modes become [®;] = [S][P]
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Fig. 10.7. Accelerations

0.2505 -1.0437 0.8946 -0.2182
610.4202 —-0.2653 -2.2693 1.6134

0.5221 0.7446 —-0.2857 —4.1342|

0.5679 1.3213 2.1299 3.0651

The vector of modal participation factors {T'} is

[®,] = 10

1.7608

0.4695

0.3262
Question 1

With the initial conditions z(0) = 0 and z(0) = 0 the time acceleration
{x(t)} are calculated and illustrated in Fig. .

The relative displacement {z(¢)} is calculated and shown in Fig. 10.8. The
time histories of the spring forces {F(7)} are illustrated in Fig. 10.9.
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Fig. 10.8. Relative displacements

3

x10° relathe displacements (m)

4 L 1 L s L s 1 L 4
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Fig. 10.9. Spring forces

The maximum values of the time histories of the absolute acceleration
{x(#)} and the spring forces {F(¢)} are given in Table 10.1.
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Table 10.1. Maximum values of the accelerations and the spring forces

Node # Absolute Spring # Spring force
acceleration N)
(/s?)

X1 340 X1—Xp 786

X2 319 Xo—X3 1331

X3 342 X3—X4 2145

X4 400 X4 2774

Table 10.2. SRS acceleration/displacement generalised coordinates

I';SRS
Natural Modal TSRS () ’ (I::.l)
frequency SRS (i) participation (m/s?) (2mf))
Mode #  f; (H2) (m/s?) factor I'; (m)
1 40.4233 147.6260 1.7608 259.9357 4.0294e-3
2 94.0432 342.8672 0.7568 259.4977 0.7432¢-3
3 151.6007  550.8845  0.4695 2586392 (28515107
4 2181650 7882119 03262 2571538 0.1369x10°
Question 2

The Shock spectra for the acceleration and the displacement per mode are
given in Table 10.2. The shock spectra per mode are given in Table 10.3,
and the absolute and SRSS values of the acceleration in Table 10.4. The
calculation of the shock spectra values of the spring force can be found in
Table 10.5, and the absolute and SRSS values are given in Table 10.6.

Observations
The SRS approach, absolute and SRSS values, bounds the maximum values
of the time histories.

Table 10.3. Acceleration

Mode 1 Mode 2 Mode 3 Mode 4
{0;30,SRS(f) {3, SRS(f;) {0,}T;SRS(f)) {9} ;SRS(f)
Node (m/s?) (m/s?) (m/s?) (m/s?)
#
X1 201.8738 ~155.1394 51.0037 -5.9718

Xy 136.7599 115.6969 —-180.3807 50.1338
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Table 10.3. Acceleration (Continued)

Mode 1 Mode 2 Mode 3 Mode 4
{0,3T,SRS(f) {0}, SRS(f;)) {¢;}T,SRS(f) {0¢,}T,SRS(f)
Node (m/s2) (m/s?) (m/s2) (m/s?)
#
X3 82.1471 150.1255 113.0865 -157.3186
X4 36.9065 85.7168 137.7211 197.0530

Table 10.4. SRS(x) acceleration

4 4
Y [{01T SRS () 3 [{0:3T SRS ()T

Node ! !

# (m/s2) (m/s?)

X1 414 260

Xy 483 259

X3 503 259

X4 457 258

Table 10.5. Forces per mode

189

Mode 1 Mode 2 Mode 3 Mode 4
Spring
# N) N) N) ™)
X1—Xo 1009.4 =775.7 255.0 -29.9
Xo—X3 1693.2 -197.2 -646.9 220.8
X3—X4 21039 553.4 -81.5 -565.8

X4 2288.4 982.0 607.2 419.5
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Table 10.6. Spring forces

Sum Absolute
values SRSS
Spring # o) ™)
X 1-X2 2070 1 299
Xp-X3 2758 1837
X3-X4 3305 2249
X4 4297 2597

10.5 Matching Shock Spectra with Synthesised
Time Histories

It is not possible to run an SRS on a shaker table, because it has no time his-
tory. The calculation of a time history from a given or specified SRS (time-
history synthesis) is not unique and the recalculation of a time history is a
process of trial and error [Smallwood 74a]. It is assumed that a time history
that results in a SRS in accordance with the given or specified SRS will
cause the same damage in the structure under test. However, the time-his-
tory synthesis is very much dependent on the physical limitations of the
exciter. These limitations are illustrated in Table 10.7 [Smallwood 74a]:

Table 10.7. Exciter limitations

Limitation # Initial Final Maximum
1 lipase(0) = 0 lipase(T) = 0 mmited
2 Upase(0) = 0 tbase(T) = 0 limited
’ Upe(0) = 0wy, (T) = 0  limited

The acceleration is actually limited by the force capabilities of the exciter
and the start and the final acceleration, velocity and displacement of the
applied transient must be zero.

Smallwood [Smallwood 74a] lists a number of possible transients that
meet the limitations indicated in Table 10.7:
e Sums of decaying sinusoids
¢ Sum of waveforms
o Shaker optimised cosines
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e Fast sine sweeps
e Modulated random noise
e (lassical pulses

A discussion of all possible techniques for time-history synthesis is beyond
the scope of this book. Only sums of decaying sinusoids will be discussed.

Decaying sinusoids
The equation of motion for the relative motion z(¢) is (10.2)
7(1) + 28w, 2(1) + 0oz(f) = —i(1).
The solution of (10.2), with initial condition with respect to displacement
z(0) and velocity z(0) is (10.4)

z(1) =z(0)e_cw“'[coswdt+ & sin(odt]

J1-¢

. t .
_antSIIl(Ddt ~{w,TSINWyT..
— | e " —u(t-1)dr.
d 0 Wy

For SRS calculations z(0) = z(0) = 0, hence

+z(0)e

t . t N

- SINM;T.. - —)SINE;(r—7T) ..
2(1)= —J' O 2ty = -j b GO R
0 O 0 ®q

If the base excitation u is equal to the Dirac delta function §(t) then

Lo, SINO4t

Z2(t) = —e = -h(t), t=0. (10.28)

Assuming z(¢) is the acceleration response of one of the generalised coor-
dinates of the uncoupled equations of motion, the transient response of a
structure consists of the superposition of decaying sinusoids that have been
exposed to shocks (delta functions). Thus excitation consisting of sums of
decaying sinusoids appears to be a natural choice [Nelson 74] as a transient
vibration test of substructures and components exposed to shocks environ-
ments. The usual basic decaying sinusoid is given by [Smallwood 74b]

_Cim,‘t .
g(t) = Ae sin(w;t) ,t20| (10.29)
0,t<0

t
The associated velocity v,(1) = I g,(t)dt, with v,(0) = 0 becomes
0
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A,.{e_c"‘”"[cos(m,.t) +,sin(w;)] -1}
(o,.(Cf +1)

vi(t) = , (10.30)

!
and the corresponding displacement s,(7) = J vi(t)dt, with 5,(0) = 0 is
0

Ai{e_c"“’"[zcicos(mit) — sin(o,1) +; sin(0,1)] + C oyt + o1 - 22;,.}

5;(1) = , (10.31)

2
o (G +1)
with
e A =1 m/s?, amplitude
e (, = 0.05, decay rate
e o, = 25 rad/s, circular frequency

1
Acceleration (mfsz)

08 /
0.6 Velocity (m/s) Displacement (m)
0.4 l
0.2 e e

07 U TA'A" R 5
02 time (s)
0413 -2

Ap=1 m/s

0.6
-0.64
i

Fig. 10.10. Acceleration, velocity and displacement associated with the associated
decaying sinusoids.

The plot in Fig. 10.10 shows that the velocity and the displacement tran-
sients do not converge to zero with increasing time, i.e. the constraints as
stated in Table 10.7 are thus violated when basis decaying sinusoids are
applied.

Velocity and displacement compensation is needed to achieve zero
velocity and displacement with increasing time. Smallwood and Nord
[Smallwood 74b] and Nelson and Prasthofer [Nelson 74] suggested com-
pensation methods to obtain zero velocity and displacement with increasing
time.
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Smallwood and Nord
- 2 g () + U+ DA e " Vsing, (1 4+1) (10.32)
i=1
g(1) = AUG-1)e " Psinw(1-1,), (1033)
with
* A, =-0,(1+ gm)z

1-1“’(1”;)

0,(1 +C12n) 20,An o |: AT 20,4, ]
= + 2 + )

An el +2) “lo0+t) ola+d

e [(r) is the unit step function, U(z) = 0,t<0 and U(¢) = 1,:20.
e The decaying sinusoids g,(¢) are in fact g,(r—1) and start after 1 (s),

L@, (14 7)

and the correcting time history A e sino,, (¢ + 1) is, in fact,

Ameﬁg'“m""sinmm(t) and starts at =0.

The magnitude A, and the shift 1 of the velocity and the displacement
compensating pulse are fixed by the other parameters.

Nelson and Prasthofer

iibase = Y 8i(1) (10.34)
i=1
g:() = A{(K;e " —Kye ") + Kz 'sin(,t + 0)}, (10.35)
with

W, a
[ ] K1= d

(a-b)[(c-a)’ + )]
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shock response spectrum (SRS), Q=10

Fig. 10.11. Normalised peak response decaying sinusoid

. - (- o)) +4ctwl
[(b-c) +w3ll(a-c)’ + ]

—2cmy Wy Wy
e O = atan - —atan(-———)— atan(b—)
¢ -0y a-c -c
[ ] = O)i
4=
o b =20,
® ¢ =G

¢ Wy = I—Ciz

The normalised peak acceleration response of decaying sinusoids is the
SRS divided by the maximum value of the decaying sinusoid g,(¢). The

maximum value of the decaying sinusoid (g) is

—C,-m,-atan —-—' l
8max = Aie ' Sin{miatan(_a)} (10.36)
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The normalised peak acceleration response of a decaying sinusoid is
illustrated in Fig. ». Fig. [Smallwood 74a] proposes a flow diagram that can
be applied to select decaying sinusoids to match a given shock response-
spectrum to estimate the amplitude A; in conjunction with the frequency o,

and the decay rate ;.

In this example the decaying sinusoids of Smallwood and Nord will be
applied to match the SRS as illustrated in Fig. 10.5.

Initial Inputs
A, 0, C, SRS,
mm’ gm

yes Calculate
AT

Calculate shock

spectrum B; at

each frequency
o, f;

No

Compare

Not OK shock spectrum
\L ateach ©,f;
with desired
Compute new 4 value

SRS, SRS,

Ai(new) = B. Ai(old)
1

OK

Plot time histories
acceleration,

velocity,
displacement

J

Plot shock response
spectrum over the
frequency range of
interest

Fig. 10.12. Flow diagram for selecting decaying sinusoids to match a gives shock-
response spectrum [Smallwood 74b]
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This SRS is based upon the half-sine pulse (HSP), upq5c = 200 sin%t g,

0<t<1t = 0.0005 s . The procedure as illustrated in Fig. will be used to
match the SRS with decaying sinusoids.
The SRS will be matched with the following values, see Table 10.8.

Table 10.8. Components of decaying sinusoids [Smallwood 74b]

Frequency

# fi ((Hz) i %) A; () T; (s)

1 250 20 35 0

2 500 10 50 0

3 750 10 68 0

4 1000 5 47 0

5 1250 5 47 0

6 1500 5 46 0
fm Hz) Cpn (%) A, (® T (s)

7 100 100 -87.7 0.0015

The matched acceleration time history of the combined Smallwood
decaying sinusoids is illustrated in Fig. 10.13. The trapezoidal rule
[Schwarz 89] was applied to calculate the velocity v(¢) and displacement
s(¢) time histories.

v(t+At) = v(t) +0.5At{u(t) + u(t+ A1)} (10.37)
s(t+ A1) = s(t) +0.5At{v(t) + v(t + AP)} . (10.38)

Several numerical integration methods, trapezoidal rule, Simpson’ rule
and the Newton—Cotes method, are described in [Hairer 96]. A very popu-
lar numerical integration method is Simpsons rule, with
x, =a+kh, x,=b,

The velocity time history is shown in Fig. 10.14, and the displacement time
history in Fig. 10.15. The original SRS and the matched SRS are both
shown in Fig. 10.16.
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Fig. 10.13. Matched acceleration time history of combined Smallwood decaying
sinusoids
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Fig. 10.14. Velocity time history of combined Smallwood decaying sinusoids
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0 0002 0.004 0006 0008 001 0012 0.014 0016 0.018 0.02
time (s)

Fig. 10.15. Displacement time history of combined Smallwood decaying sinusoids

Matched shock response spectrum [Smallwood 74b], Q=10
360 T T

Fig. 10.16. Original and matched SRS
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10.6 Problems

10.6.1 Problem 1

Calculate, using the Wilson-6 method, the absolute acceleration SRS of the
following 4 pulses:

1. Rising triangular pulse

2. Decaying triangular pulse
3. Rectangular pulse

4. Half-sine pulse

and illustrate the SRSs in one figure. The pulses start at r = t = 0.0005 s
and the duration f4,,;,, = T . The amplitudes of the pulses are unity. The

results obtained with Kellys numerical approach are illustrated in
Fig. 10.17.

Shock response spectum (SRS), G=10

0 500 1000 1500 2000 2500 3000 3800 4000 4500 5000
Fraquency (Hz)

Fig. 10.17. SRS of rising and decaying triangular pulse, rectangular pulse and the
half sine pulse

The equation of relative motion z(¢) of an sdof dynamic system, exposed to
a base acceleration u(t), is given by (10.2)
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The Wilson-08 method is defined as follows [Wood 90]
{Z;,1} = [A{Z;} + {Fp},

with
¢ {z3=|Y
Atz;
2 2
111 +2At0w, - 0(1 -0)Ar" ® 1
L4 [Ae]=D91 Cn22 n ) 2
-Alw, 1-(1-8)2Ar6m, - 8(1 - 0)Ar" o,

Dy = 1+2A1000, + 0°Arw]

{Fe} - —AIZDEII:e{el;j+l +(1 —e)u]}]
{e’:l.j+l +(1 _e)i"i}

6 =05
j is the time step

and the absolute acceleration x of the sdof system is

. . 2
Xj+1 = 200,241-0,2, 1 -

10.6.2 Problem 2

Match the SRS of a half-sine pulse (Fig. 10.5) with decaying sinusoids
using the proposed method of Nelson and Prasthofer [Nelson 74],

Ubase = 200sin7—f—cf g, 0<t<1 = 0.0005s, elsewhere upse = 0.




11 Random Vibration of Linear
Dynamic Systems

11.1 Introduction

By random vibration of linear dynamic systems the vibration of determinis-
tic linear systems exposed to random (stochastic) loads is meant.

Random processes are characterised by the fact that their behaviour can-
not be predicted in advance and therefore can be treated only in a statistical
manner.

A microstochastic process is for example, the "the Brownian motion" of
particles and molecules, [Wax 54], a macrostochastic process is, for exam-
ple, the motion of the earth during a earthquake.

During the launch of a spacecraft with a launch vehicle the spacecraft
will be exposed to random loads both of mechanical and acoustic nature.
The mechanical random loads are the base acceleration excitation at the
interface between the launch vehicle and the spacecraft. The random loads
are caused by several sources, i.e., the interaction between the launch-vehi-
cle structure and the engines; exhaust noise, combustion. Also, turbulent
boundary layers will introduce random loads.

In this chapter the theory of random vibrations of linear systems will be
briefly reviewed.

For further study on the theory of random vibration the following refer-
ences [Bismark-Nasr 99, Bolotin 81, Crandall 63, Crandall 73, Elishakoff
83, Elishakoff 94, Heinrich 78, Lin 76, Lutes 96, Maymon 98, Newland 94,
Robson 71, Schueller 87, Wirsching 95] are recommended.

11.2 Random Process

A _random process is random in time. With the aid of probabilistic theory
[Papoulis 65] of random processes the probability can be described. The
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mean value and the mean-square values are of great importance for random
processes. We can make a distinction between ensemble and time averages.
In this section we will briefly restate the properties of random processes.

The ensemble average of a collection of sampled records x,(z), x,(?),
x5(1) ,...,x,(7) ata certain time ¢, is defined as

E{x(1))} = }lzxj(t,). (11.1)

j=1

The time average (temporal mean, [McConnel 95]) value of a record
x(t) , over a very long sampling time T, is given by
1 T
(x) = limi, x(t)dt. (11.2)
0

T— o

First we make in Table 11.1 a qualification of random processes.

Table 11.1. Qualification of random process

Random process Stationary Ergodic
Stationary Non ergodic
Non stationary Non ergodic

A random process x(t) is stationary if the ensemble statistics are inde-
pendent of a time-shift T (s), which means, for example, for ensemble aver-
ages of x(¢) and x(t + 1)

E{x(t))} = %ij(tl) = }lzxj(z, +1). (11.3)

j=1 j=1

For an ergodic random process the ensemble statistics are equal to the
time averages, i.e. for the average values

T
1¢ 1
E{x(1)} = 3+ Y xn) = Tlgnjj'ﬂx(t)dt = (). (11.4)
j=1
An ergodic process, is by definition, a stationary process.
For our purposes we will assume a stationary and ergodic random proc-
ess x(t).
The cumulative probability F(X), that x(¢) <X, is given by
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X
FOO = | foods, (115)

with
e f(x) the probability density function with the following properties
* f(x)20

. J'w fx)dx = 1

X +dx
o F(X+dx)-F(X) = j fx)dx = fX)dx X<x(f) <X+ dx
X

The cumulative probability function F(x) has the following properties:
® F(-) =0

0<F(x)<1

F(eo) =1

[ ]
=
=
~
|

Examples of probability density functions (p.d.f.) are [Scheidt 94]:
e The constant distribution G(a, b), X is called equally distributed over

the interval [a,b], X ~ G(a, b), f(x) = b%a’ a<x<bh, f(x) = 0 else-

where.
e The normal distribution N(u, 6), 6> 0. X is normal distributed with the

-’
1 20°
e
ON2T
e The log normal distribution LN(, 6), 6> 0. X is log normal distributed

with the parameters u and 6, X~LN(l, 6), x>0, when
_(In() -’

2
f(x) - 1 e 20
o221

e The Rayleigh distribution R(c), 6 >0. X is Rayleigh distributed with

parameters u and 6, X~N(y, 6) when f(x) =

X

2
the parameter 6, X~R(0), x>0, when f(x) = 2—’263 °
o

For an ergodic random process the term f(x)dx may be approximated by
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fx)dx = Tlgnw%,ZSti, (11.6)

with
e 3, the lingering period of x(z) between a<x<f

The mode is defined as the peak of the p.d.f. f(x), and the mean value p
has an equal moment to the left and to the right of it:

j (x—Wf(x)dx = 0. 1.7

This means that the averaged value of x can be calculated with

oo

[
E(x)=p=-—=—— = j xf(x)dx . (11.8)

[ reax

We can also define the n-the moment about the mean p is follows

b= | -w . (11.9)

The second moment is called the variance of a signal.

o’= = [ (-, (11.10)

and o is called the standard deviation.

Suppose a sinusoidal signal x(¢) = Asinwt. Over one period T (s) the
signal x(¢) will cross a certain area twice when x(1) = X+0x<A, with a
total time 28¢. The p.d.f. can be estimated with

f(x)dx = 276’ = Sonit and with &x = wAcoswrdr the p.d.f. becomes
1 1

TAcosor Mw'

The mean value p is, in accordance with (11.8)

flx) =
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E0=p = [ o =0,

. 2
and the variance ¢~ becomes

Cod 2
o= = [ -wwar =%

In general, within the framework of linear vibrations it may be assumed
that the averaged (mean) values of the response of linear systems exposed
to dynamic loads will be equal to zero. So the second moments about the
mean |, the variance, are equal to the mean square values, or

E(x2)= o’ = J xzf(x)dx.

A random process x is randomly distributed, 0 <x <1, with a p.d.f.
e flx) =1,0<x<1
o f(x) =0,x<0and x>1

Calculate the mean value, the mean square and the variance of x:

oo 1
e The mean value E(x)= L = J xf(x)dx = jxdx = %
oo 0

oo 1
e The mean square E(xz) = J. xzf(x)dx = J xdx
—oo 0

1
3
1

o The variance 6’= E(x) -’ = I (x—w)fx)dx = E(x")—p* = 5

e The standard deviation ¢ = 0.289.

For a stationary and ergodic random process x(#) we have established
the following relations for the mean value

oo T
W = (x) = E(x) = J.wxf(x)dx= Tliinm%jox(t)dt, (11.11)

and for the mean-square value

=3

T
() = E() = _[ Pfxde= tim o Aodr = ?+pl. (1112
. T—ol 0
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" AﬁnmAﬁﬂ!
| /,U,L\JT\/\]\J VY

Fig. 11.1. Autocorrelation

The autocorrelation function of a stationary and an ergodic random proc-
ess x(t) is defined as (Fig. 11.1)

T
Ro(¥) = Ex(0x(t+7)} = lim 1TJ' X()x(+T)dt (11.13)
2%

with the following general properties
e limR (1) =0
T—> o0
e R, (1) is areal function
e R (1) is a symmetric function, R (1) = R, (-1),
R, (1) = E{x(t-1)x(1)}
T
e R_(0) = E(x") = lim 1_[ X(t)dr
T—)wT 0

® R,(0)2|R, (1), which can be proven with the relation
1 T
lim —J' [x()%x(t +1))°dt 2 0
T—eTd )

o The correlation between x(¢) and x(¢) is R (1) = -R, (1), thus
R _(0) = -R, (0) = 0
o If x(r) = ay(t) +Pz(¢) then
R, (1) = 0’R,(7) + B°R,,(T) + @BR (1) + OBR (1)
e The Fourier transform requirement is satisfied for the autocorrelation

=)

function I |R . (T)|dT < o0

—oo

The crosscorrelation function is defined as
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T
Ry(¥) = E{x(ny(r+7)} = lim %_[ x()y(t +1)dt. (11.14)
2"

The autocorrelation R, (1) of x(f) = Asinwt is

2n
— 2

1 wA*fe . . A
R (1) = —j x(Dx(t+T)dt = —j sin®zsin®(z + T)dt = —cosMT.
T. 0 27 0 2
The mean square of x(¢) is
2 A2
E(x’) = Ry(0) = 5.

11.3 Power-Spectral Density

The Fourier transform of a function x(¢) is defined as [James 93]

oo

F{x(H)}= X() = j x(t)e ' dr, 11.15)

and the inverse of the Fourier transform

FUX(0)}= x(t) = ﬁj' X(0)¢"do, (11.16)

assuming that J lx(t)|dt < oo
We may write for the autocorrelation function R, (1)
1 1
R, (1) = lim ~j x(H)x(t+7T)dt = lim ——j x(Dx(t+1)dt.  (11.17)
T ol 0 T 02T T

The Fourier transform of the autocorrelation function R, (1) is called the

power spectral density function S, (w) (also called autospectral density
[McConnel 95])

S (@) = j R (1)e”?"dr = 2] R, (T)cos(@T)dr, (11.18)
—oo 0
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R, (1) = %J S_(0)d"dw = }J S (w)cos(wT)do. (11.19)

Both the autocorrelation function R ,(t) and the power spectral density

S, (@) are symmetric functions about T = 0 and = 0.

The pair of (11.18) and (11.19) is called the Wiener—Khintine relation-
ship [Harris 74].

For the correlation function R(t) = o’ will give the following
power- spectral density function S(®)

A2 " _ 26°b
S(w) = 2067| e cos(wT)dT = -
0 b +0)

The correlation function R(t) is given by (see Fig. 11.2)

I I
N B § <
R(T) 2] 1 et l<e

0 [t >¢

R(7)

Fig. 11.2. Correlation function

The power-spectral density function S(®) becomes

oo 2
S(w) = ZJ R(T)cos(w1)dt = 2—22{1 —cos(we)}.
0

The total energy E of the signal x(¢) is given by [James 93]
E = f [x()]dr. (11.20)

The (average) power P of the signal x(r) is given by [James 93]
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T

_ o 1 2
P = Th_l)nszj_T[x(t)] dt. (11.21)

With use of (11.16) we can rewrite (11.20)

E = j x(t)x(t)dt:J. x(t)[%tj‘ X(O))ejmtda)}dt, (11.22)

or by changing the order of integration (11.22) becomes

E = %J_wx(m)“_mx(t)e"‘"dz}dm = %J_wX((o)X*((o)do), (11.23)

hence

=3

E = L Lx(t)]2dt = %tj_mx(w)x*(m)dw - 2%: _wIX(m)Ide, .

The resulting equation (11.24) is called Parseval’s theorem [James 93], with

e |X()|’ the energy spectral density, if z = x+jy,and 7 = x—jy result-

. * 2.2 2
mginzz =x +y ='Z|'

Equation (11.21), using Parseval’s theorem, can be written as

T o
.1 2 1 .1 2
= 1 _j = _I lim — , )
P lim 5= _T[x(t)] dt o _mTlrnNZTlX(o))l dw (11.25)

with

e lim %,IX((»)I2 the power spectral density (PSD) function of x(¢)
T— oo

Using (11.17), (11.18) after multiplication by ¢“'¢7*’, can be written

=)

1
S (w) = j lim —}[J‘_Tx(t)x(t+‘r)dt}

ejwte—jw(HT)
oo T — m2

S | 2
dt = TlezTIX(m)I . (11.26)

The average power P, (11.25), can be expresses as follows

1

1
211: T—)oozT

—o0

.1 2 1 ("
im —|X(o)| do = 5 J‘_NSxx(co)d(o = R (0), (11.27)

hence
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CED)= = L[
R.(0) = EGH)= p? = 2n_[_wSm(m)da)‘ (11.28)
S..(w) has the following properties
® Sxx(m) = Sxx(_—('o)
o S ()20

The PSD function S, (o) is two-sided. It is more practical to replace ®

(rad/s) with f (Hz, cycles/s) and to replace the two-sided PSD function
S, (o) with a one-sided PSD function W (f) and than (11.28) now
becomes

Ro(0) = EG)= 1} = [ W.00df, (11.29)
0

with
e W, (H) =25, (w)

White Noise

If the power-spectral density function of a signal x(¢) is constant over the
complete frequency range, W, (f) = W,, 0<f<e we talk about white
noise.

. W
The power-spectral density function S, (®) = —2—", —o<@<oo. The

autocorrelation function R, (t) can now be calculated using (11.19).
A 0ty = Do L[ joryy o Wo
R (1) = 2n_[_wsxx(m)e’ do = = MLe’ do = = 3(1),
with
. j d(t)dt = 1, §(1) the Dirac delta function.

We have a random process with a constant (white noise) PSD function
between two frequencies (band-limited). Calculate the associated auto cor-

relation function R (1)
o W) =W,,fisf<f,
o W) =0,f<f and f>f,

The autocorrelation function R, (1) is
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R.(7) = zinj S, (0" do = %J S, (©)coswTd®. (11.30)

Equation (11.30) can be easily proved because

%J S, (0)sinotdo = 0, (11.31)
and therefore
Ro(®) = 5[ Su(0)cosotdo = L[ 5 (@)cosamdn.  (1132)
2nd )
Hence
27f, w
R = 32| cosotdo = > 2[sindnfyt-sin2mfitl,  (1133)
2n o 2nt
resulting in
W, .
R.(0) = lim —[sin2nf,T - sin2nf,7] = W,lfo—f]. (11.34)
15 0277T

The result of (11.34) corresponds with the result we had if we used (11.29).

Assume a very narrow bandwidth [f,-f;] = &f. Then (11.33) then
becomes

w
R (¥) = 3 2[sin2n(f, +8)T - sin2nfy1]. (11.35)
Using the Taylor series f(x + 8x) = f(x) +f;§—)f—)8x +%8x2 + ..

COS2Tf|T
1!

sin2n(f; + 8f)T = sin2mf; T + 21oft. (11.36)

The auto correlation function R,,(t), with (11.35), can now be calculated

R (7) = 2w;;[(cos2nflt)2n6ft] = W, 8fcos2nf|T (11.37)

R, (0) = W, 5f. (11.38)
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In the following Table 11.2 some useful relations between the autocorre-
lation function R, (t) and the power-spectral density function S, (o) are

given.

Table 11.2. Properties of auto correlation and power-spectral density function

x(t) Rxx(T) Sxx(m)
oux(r) o’ Rex(T) 0 S ()
dx(t) d*Rux(7) ©°Sxx(®)

dt 2

dart
dx"(t) nd”"Rex(7) 0" Ser(®)
n (_1) 2n

dt dt

x(e R (t)e” ™ S ©F ®,)

11.4 Deterministic Linear Dynamic System

The linear deterministic system is illustrated in Fig. 11.3. The system shows
no random properties and the properties will not change with time. The sys-
tem is excited with a random load f(r) and the response (output) of the sys-
tem is denoted by x(#). The random responses x(¢) are very generalised
and may be: displacements, velocities, accelerations, forces, stresses. The
linear system will be characterised using the impulse response function.
Linear means that doubling the loads f(r) will result in twice as much
response x(¢). Besides presenting the forces and responses in the time
domain the forces and responses are transformed in the frequency domain.

A linear system may be represented either simply, as a single degree of
freedom system (sdof), or more complex with multi-degrees of freedom
(mdof), or even as a continuum. But in the solution of the responses the
modal superposition will be applied many times and the problem will be
reduced in solving many uncoupled sdof dynamic systems.
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f1) h(t) x(t)
? H(w) g
F(w) X(w)
Random loads Random responses

Fig. 11.3. Deterministic dynamic system

The response x(r) of the linear system, due to the force f(z), and the
impulse response function k() is given by the convolution integral

x(t) = j h(OAE—1)dr, (11.39)

or in the frequency domain [Harris 74] by
X(0) = H®)F(0), (11.40)

with
e f(t) the generalised external force in the time domain.

F(®) = J f(H)e?*"at , the Fourier transform of (¢).

. 2
- oAl -
® K(1), the damped impulse response function A(t) = e Cm“tsm—"—c—

N1 - ¢ .
This impulse response function can be derived from the sdof
dynamic system x(f) + 2{o,x(¢) + 0.x(1) = f(1).

e H(w)the frequency response function, the Fourier transform of A(¢),

H(w) = j h(t)e?dt.

e x(t) the response of the sdof system.

oo

e X(m) the Fourier transform of x(7), X(®) = J- x()e?®dt and

—o0

x(1) = %J X(0)d*do.

The PSD function of x(z), in accordance with (11.26) , is
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S(@) = lim 21X(m)X (@) = lim —|X((0)| (11.41)

with

e X (w) = j x(1)¢®"dt the conjugate of X(w).

—oco

The PSD function of the random response x(¢) can be expressed in the
PSD function of the random loads, applying (11.40)

Su(®) = lim 2TX(m)X (@) = lim TH(m)H (O)F(0)F (0), (11.42)
or

S (@) = [H®)*Spp(o). (11.43)

Equation (11.43) is very important to analyse the response characteristics of
linear dynamic systems.
The cross-PSD function S, (o) is

$.¢(@) = lim S-X(@)F(0) (11.44)

S, r(®) = Sp (), (11.45)

with
e R(S,r(w)) the real part of the cross-PSD function is called the co-spec-

tral density (CSD) function
e 3(S,r(m)) the imaginary part of the cross-PSD function is called the

quad- spectral density (QSD) function
S p(0) = Tli_l:lwzi,lX((o)F*(m) = Tli_r)nwleH(o))F(c))F*(w) = H(®)Spp(®). (11.46)
The cross-PSD function is generally a complex-valued function.
11.4.1 Force-Loaded Sdof System
The mass—spring—damper system is loaded by the force F(r) at the massm .

The mass is suspended by a linear spring with spring stiffness & and a
damper with damping constant c.
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1
| b

fixed base

Fi(t)

Fig. 11.4. Sdof system loaded with force F(t)

The equation of motion is

mx(t) +cx(t) + kx(t) = F(1). (11.47)
Dividing (11.47) by the mass m the equation of motion of the damped sdof
system becomes
(1) + 2L, 54(1) + 02x(1) = ’%’) = f1), (11.48)
with

°* @, = JE the natural frequency (rad/s)
m

e { = —5_ the damping ratio
4 N ping

For harmonic motions, we write

x(1) = X(0)¢®" and f(t) = F(0)d*". (11.49)
Substituting (11.49) into (11.48) the following result is obtained

X(0) = H®)F(0), (11.50)

with
e H) = L the frequency response function.

2 2 .
0, -0 + 20w,

The square of the modulus of H(®) is

1

H(o)* = -
+(20ow,)

ol La N ZJI_ELI

— (11.51)
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The mean-square response of x(t), due to the random load f(¢) with the
PSD function Syz(®), using (11.43), becomes

E{x(t)’} = R_(0) = QITJ |H(0)|*Spp(@)dw . (11.52)

For the time being the forcing function f(z) has a constant PSD function

. w
(white noise) S,-(®) = i(f—) = S., thus
FF 2 F

E{x(1)’} = R_(0) = j—;j H(w) do. (11.53)

oo

The integral J lH(m)izdw has a closed-form solution [Newland 94]. If

. ) 2 2
By,+joB n{A,B] +A,B
H (m) = __L‘]_._l— then I, = IH (m)lzdw = {_L.E_O_}
2 . 2 2 2 A A
Ag+j0A, -0 A, - 014,

The modulus of the frequency-response function |H(w)* is given by

(11.51). Thus
2

* Ay =,
* A =2o,
o A, =1

e By=1

° B, =0

The integral (11.53) will be

S, S
E{x(n*} = R.(0) = =£| |H(®)|*do = —£ . 11.54
('} = Ry = 5] (@) o~ (11.54)

n

The mean square of the acceleration x(t), E{,'v'z(t)} , with a white-noise
forcing function does not exist [Piszczek 86].

11.4.2 Enforced Acceleration

An sdof system with a discrete mass m, a damper element ¢ and a spring
element kis'placed on'a moving base which is accelerated with an accelera-

tion u(z). The resulting displacement of the mass is x(r). We introduce a



11.4 Deterministic Linear Dynamic System 217

relative motion z(¢) which is the displacement of the mass with respect to
the base. The relative displacement is

m ]\
x(t)

T u(t)
moving base

2(t) = x(1) —u(t). (11.55)

Fig. 11.5. Enforced acceleration of a damped sdof system
The equation of motion of the sdof system, illustrated in Fig. 11.5, is

7(1) + 28w, 2(1) + 012(t) = —i(r). (11.56)

The enforced acceleration of the sdof system is transformed into an
external force.
The absolute displacement x(¢) can be calculated with

(1) = 2 +i(t) = —28w,2()-0l2() . (11.57)

The PSD function S, (w), of the relative motion z(t), becomes (using
(11.43))

S,.(0) = |H(0)’S,.(») (11.58)
with
¢ §.(0)= Tli_r)nwziTU((o)ﬁ*((o), with a dimensions of (m/s?)*/(Rad/s).
Using W..(f) = 25,.(®) the dimensions of the PSD function are
(m/s%)4/Hz

We will derive the mean-square values both in the time and frequency
domain starting with derivation of the autocorrelation function R (7).

Using (11.19)
1 ” joT
R,(1) = EJ S..(0)¢*"do,

and.inserting,(11:58),we obtain the following expression
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R (1) = 2%: H(0)|’S...(0) " do,

with the frequency response function H(®)

H(w) = 1 (11.59)

2 9

2| (0] (0]
1-=+2—
(0,{ 0)2+ ]mn)

n

and IH(o))I2
! (11.60)

if(1-2) +¢2y}

—u(t) has a constant PSD

|H(0) =

For the time being the forcing function f(¢)

Ww.
function (white noise) S...(0) = “s =8, = —z-i‘

Now the auto correlation function R,,(t) can be written as

oo

ot e

1-=

n

,
(11.61)

Finally we obtain for R (1), [Bismark-Nasr 99]

-0,
S..
R, (1) = Zec ([cos(mdtﬂ—g—sin(wdt):l), (t20). (11.62)

3 /——1_2;2

n
The mean square of the response z(f) becomes

S.
E{z(t)’} = R,(0) = —*5 = —-. (11.63)
4Co, 8Co,

We know that

(11.64)
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and

4
d'R_(1)
— .

Ra®) = —

(11.65)
We will repeat the mean-square calculations of z(z) in the frequency
domain.
Using (11.43) the mean-square response of z(t), due to the random load
f(t) with the PSD function S..(®), becomes
E{z(1)’} = R(0) = 2%: H(0)|’S,.do . (11.66)

For the time being the forcing function f(¢) has a constant PSD function

o W..() w.
(white noise) S...(0) = “5 =S. = ", thus
E{x()’} = R_(0) = S—_[w |H()|*do (11.67)
- Mxx - o1 B . .

The modulus of the frequency response function |Hw)* is given by
(11.51). Thus the integral (11.67) becomes

2r 3

2 Saf” 2 S
E{z()"} = =| |Ho)|"do = . (11.68)
oo 4Cw,

This is analogous to (11.54).
The mean-square value of the relative velocity z(z) is given by

00

_ . .
E{Z (D)} = EJ ol |H(w) do = TR (11.69)

Now we want to calculate the mean-square value of the acceleration
x(t), which can be calculated using (11.57), x(¢) = —ZCmnz'(t)—miz(t) . The
autocorrelation function for the acceleration is

R..(1) = (24w,)'R..(1) + O,R,,(¥) + 260,R. (1) + 2Lk (1) . (11.70)
The autocorrelation R. (1) = -R (1) between the velocity z(¢) and the dis-
placement z(t) . Therefore

R+(0) = (280,)°R..(0) + 0,R_,(0), a1.71)
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or
.2 2 2 4 2 m“Sij 2
E{x ()} = 200, E{z (1)} + 0, E{z° (1)} = 4t (1+487), (11.72)
or
-2 m"Sii 2 T 2, T
E{x (1)} = 4t (1+40) = Ef“QWﬂ(l +4( )“§anWﬁ’ (11.73)
where

e 0= 2_1C the amplification factor

o f the natural frequency (Hz)

In general, the mean value of the acceleration x() is zero, . =0.The

variance of the acceleration x(¢),
o} = E{(F' (0} -1} = E{X' (0} = Fms (11.74)

where
e rms the root mean square

The modulus of the frequency transfer function |H (m)l2 , (11.51), shows a
maximum value at the natural frequency o = o,

2
H(w,) = £

==.
. . 0

The bandwidth Aw at half-power, i.e. |H(®0)|” = =, is Ao=20o, or

2

(’on

Af=2Lf,.
The mean-square value of the acceleration x(¢) can now be written as

E{X ()= 31,0W; = 386,0°W,. (11.75)

Most of the contribution of the power to the mean-square value of

E{)'cz(t)} is stored in a very peaked area with a bandwidth 7-2tAfn and a

height 0’ . The contribution to the power outside the bandwidth gAfn is
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much less. If the PSD function of the forcing function W_..(f) is rather con-

stant in the bandwidth gAfn and in the neighbourhood of the natural fre-

quency f, (Hz), (11.73) may be approximated by

E{(' (0} = ZHOW.(f) (11.76)

Equation (11.76) is called Miles’ equation, [Miles 54], and is normally writ-

ten as
Xoms = /ganWW(fn). (11.77)

If the PSD function W.(f,) has the dimension (gZ/HZ), the rms value of the

acceleration x.,s has the dimension (g), in practice often denoted by Grms.

The equation of motion of the sdof system, illustrated in Fig. 11.5,
expressed in the absolute responses is

mx(t) + c{x(t) - u(t)} + k{x(t) —u(t)} = 0. (11.78)
Equation (11.78) divided by the mass m will result in
x(t) + 28w, x(1) + wix(t) = 2Lw,u(t) + (oflu(t) = f(1). (11.79)

The PSD function of the forcing function f(¢) is defined as

Spp(@) = Tli_x)nmziTF(w)F*((o) - TninwziTl[zgmnij(m)+mﬁU(m)]|2 (11.80)

or

Spp(®) = Tli_r)nmLT[ZijnmU(m) + 0:U(0)][-2Cw,0U (0) + 0 U (0)].

(11.81)
Further expanded this gives
Spp(®) = lim %(2Z;a)nm)2U(m)U*(a)) + 0 U(0)U (o)
T — o
lim ziT[ +j0 0UO)U (0) - jo.oU@)U (0)]. (11.82)
T — oo
Thus, finally,

Srr(@=rl(REg0) + ©071(S,,(®)) (11.83)
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or expressed in the PSD function of the enforced acceleration u(z), (11.83)
becomes

Spr(®) = [(zcw“)2+(°i‘)2}sﬁ(m). (11.84)

() w

The PSD function of the absolute acceleration x(¢) will be

S.(w)= (04|H((0)|2SFF(0)) = 0)4|H(0))|2[(%(&’)2+(%)2:|S,;,;(03)~ (11.85)

Equation (11.85) can now be rewritten as

o, +2jlw

S.(w)= |fl(m)|2spp(co) = 2SL-,,-,-(w) : (11.86)

o, -0 +2lon,
The mean-square response of x(t), due to the random load f(¢) with the

w.
constant PSD function S,.(0) = S, = —* becomes

2
E{(H%} = R..(0) = ﬂf (o) doo (11.87)
xx 21T N ’ :
with
* Ay = 03:21
e A =20o,
e A, =1
[ ] BO = o)n
[ ] B1 = ZC
The integral in (11.87) now becomes
E{i(n)*} = R..(0 —ifz} P = 2261 + 40 =T ow.. (1188
{x(7} = R, ( )—27:_“ (0)| do = 4§( + C)~2an . (11.88)

The result of (11.88) is the same as that obtained in (11.73).

We have an sdof dynamic system with a natural frequency f, = 100 Hz

and a damping ratio { = 0.05, Q = L . The white-noise PSD function of

26
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the base acceleration is W, = 0.1 g2/Hz. Calculate the rms acceleration of
the sdof system.

The rms acceleration response of the sdof system can be calculated using
either (11.73) or (11.88), the Miles’ equation, (11.77)

Krms = A/ganWW(fn) = A/’—Ztloo 100.1 = 12.53 Grms.

11.4.3 Multi-Inputs and Single Output (MISO)

In Fig. 11.6 an sdof system is shown with both an enforced acceleration

u(t) at the base and a direct force F(t). We will now calculate the PSD
function of the force and acceleration. This will result in PSD functions and
cross-PSD functions.

TF(r)
T x(1)
23

T u(r)
moving base

Fig. 11.6. Multi-inputs (F(¢) and u(t)) single output (x(t))

The equation of motion of the sdof system, illustrated in Fig. 11.6, is a sum-
mation of (11.48) and (11.79).
X(t) + 280, x(1) + 0ox(1) = f(t) + 200, u(t) + oou(t) = q(f).  (11.89)

E()

ol
The PSD function of g() is

200,\2 [o,)? o,)?
[( ) " (5) St + Spe@) + 2(6) S,(®), (11.90)

®

The force f(t) is f(t) =

with
e S.-(w)the PSD function of f(r)
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* §..(w) the PSD function of the enforced acceleration

* S(w) = SZ.F((o) the cross-PSD function of f(¢), u(t) and is, in gen-
eral, a complex-valued function

11.5 Deterministic Mdof Linear Dynamic System

Dynamic systems may be exposed to random forces and or random
enforced motions (i.e. acceleration at the base). Both kinds of random loads
will be discussed in the following sections.

11.5.1 Random Forces

In general, the equations of motion of a discrete mdof dynamic system can
be written as

M{x()} + [CI{x()} + [KH{x(1)} = {F(1)}, (11.91)
and consists of the following matrices and vectors:
e the mass matrix [M]
e the stiffness matrix [K]
¢ the damping matrix [C]
o The force vector {F(t)}
o the displacement, velocity and acceleration vectors {x(#)}, {x(¢)} and

{x(n}

For linear mdof systems the mass, stiffness and damping matrix do not
vary with time and are deterministic, however, the displacement, velocity,
acceleration and force vector do usually change with time and are random.

Using the modal displacement (superposition) method (MDM) the phys-
ical displacement vector x(¢) will be depicted on the independent set of

vectors; the modal matrix [®]
x(t) = [@{n(n)}, (11.92)
with

e {n(1)} the vector of generalised coordinates

The modal matrix [®] = [¢,, 0, ......,0,] has the following orthogonality
properties with respect to the mass matrix and the stiffness matrix
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[®] [M][®] = (m) and [®]"[K][®] = (Am) (11.93)

e (m) the diagonal matrix of generalised or modal masses

e (Am) the diagonal matrix of the eigenvalues multiplied by the general-
ised masses

Using (11.92) and premultiplying (11.91) by the transpose of the modal
matrix [CD]T the result will be

(@1 [MI[@I{T (0} + [@) [CI@NAMN} + [@] KI[@I{n(n} = [®){F(1)}
. (11.94)

Making use of the orthogonality properties of the modal matrix, (11.93),
the equations of motion are expressed in generalised coordinates, general-
ised masses, eigenvalues and generalised forces

(my{N(n} + ()N} + (Amd{n()} = A1), (11.95)
with
e f(1) the vector of generalised forces
e (c) the diagonal matrix of the generalised damping. This means the
damping matrix [C] consists of proportional damping. Generally,

we will add on an ad hoc basis modal viscous damping to the

uncoupled equations of motion of the generalised coordinates,
C:
— = 200, ¢; = {0} [CI{9;}.

i

= {¢i}T[M]{¢,.} the generalised mass associated with mode {¢,} .

o { = “i _ the modal damping ratio.
2, Jk;m,

® k = {q>,.}T[K]{¢,.} = A,m; the generalised stiffness.

[ ]
>
Il

oo,.2 the eigenvalues of the eigenvalue problem

([K1-N[MD){0;} = {O}.

Finally, the uncoupled equation of motion of the generalised coordinates
enforced with the generalised forces becomes

,i=1,2,... . (11.96)

T
Ri(0) + 20,00 (0) + oI (1) = {¢,-}r;{f(z)} _ a0

i m;

The PSD function of the external generalised forces ¢,(r) is defined as
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5,4(©) = lim 50,(@)0](0) = lim 5-{0,} (F(@)HF; @) 18} (1197)
or

S4q (@ = {0} IS (@0}, (11.98)
with

* [Spr(®)] the matrix of PSD and cross-PSD functions

Sp,r,(®) Sp £, () . Sr,r (©)
(S 1 (0)] = Sp,r,(®) Sg,p,(©)
J S AAC)
Spr (@ . Spp (0) Sgp(0)
The PSD function of the generalised coordinate n,(¢) is
Spn (@) = ’H;im)’ Sgo(®) = ——( ){¢} [SF,r(@){0; }—L—( ) (11.99)
i J
with
e H(w) = 1

2 2 .
0; -0 + 2j{ow,

The matrix of PSD and cross-PSD functions of the generalised coordinates
becomes

H(o T H (0
[Syq(@)] = (%)[‘D] {SF.F.((D)][(I)]<—J_(_—)>' (11.100)
il i L] m]
. [Sn.»n,-(w)] the matrix of PSD and cross PSD functions of the generalised
coordinates
(Sﬂlm(w) Smnz(m) ’ Smﬂn(m)
S. S
[Syn (@] = mn, (@) Snzn,(©)
o STlnqﬂn(m)

S (@ Spg (@) Sy g (@) ]

The matrix of PSD functions and cross-PSD functions of the physical dis-
placements {x(1)} = [®I{n(n)} with n(r) = [(w)d*" is
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g _1_ * T_ . _1_ * T T
[S,(@)] = Tlg)nsz{X,v(m)}{X,(m) } o= Tll_r)IINZT[Q]{l'I,-(G))}{Hi(w)} (@],

(11.101)

or

(S, (@)] = [P, ()]1[@]". (11.102)

Finally, we end with

H. T H
(S, (@)] = [<D][<—i,n(f0)—)>[¢] [Sp,.pj(w)][‘D](—%D—))}[q’]T- (11.103)

J )

The matrix of mean squares of x(¢) can be calculated

L -
[Ex)] = Ry (0) = 5- L [S,.(@)]do = jo (W, (Dldf.  (11.104)
Equation (11.103) can also be written as

H(2 r H,(2
) ) [WpiFj(f)][¢]<—%—m>}[<blT. (11.105)

i J

(W, (@)] = [d>1[<

11.5.2 Random Base Excitation

An mdof dynamic system will have an acceleration base excitation at the
base (Fig. 11.7)

x(t)

s

Fig. 11.7. Base excitation
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[MI{x()} + [K]{x(1)} = {0}. (11.106)

If we introduce the relative motion vector {z(¢)} = {x(#)} - {u()}, with
[K{T}u(t) = {0}, (11.106) becomes

M{z(D)} + [KH{z()} = -[MI{T}u(z) (11.107)

(m ﬂ>[<I>] [pr(f)][cD](—f—f))}[d)] (11.108)

i J

[Wzizj(f)] = [@] |:<

with
o [Wrr(O] = (D’ IM{THTY IMIW, ()

H,(2mf) = the frequency-response function

1
@r)’(f; - f + 28
m; = {q>,.}T[M]{q>,.} the generalised mass
[®] = [0y, Oy, -..nd,]  the modal matrix

(—(21tf,-)2[M]+[K]){¢,.} = {0} the eigenvalue problem

Equation (11.108) can be written as

[W,.,(N] = [IH N Wiy = T ODIH (D Wi (11.109)

(©29)]
W, (] =[[<1>][< LM, @) gy [MJ[«D](—J—>}[<I>1) W -

J
(11.110)
Thus, the FRF [Hu.‘.(f)] is

2nf)

[H,(0] = —[d>][< =)o [M]{T}} (11.111)

The minus sign reflects the negative RHS of (11.107).
The FRF [H,,(o)] between the displacement U(w) and the relative dis-

placement Z(®), {Z(w)} = [H,(0)]U(®) = —m2[HZJ(u))]U(0)), becomes

H. T
[H, ()] = m2[<I>][<—§)—)>[<D] [M]{T}] ) (11.112)

The absolute. displacement. vectoris {x(¢)} = {z(r)} + {T}u. The PSD
function of the absolute displacement {x(¢)} is defined as
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Sy (@)= lim i{X(co)}{X’-‘(co)}T, (11.113)
v T—w2T J
or
Su (@)= lim - [{Z(@)} + {THU@DIHZ ()} + {THU @), (1.114)
or
e (@)= lim 5o(([H,(@)1U(@) + {TYU(@)DIH,(@)] U*(@) +{T} U*(@)),

(11.115)
and, finally,
S, (©)= ([H () [Hoy(@)) + {THH. (@)1 + [H (@) T} + {THT})S, (o).
(11.116)
The PSD function for the acceleration x(¢) becomes

S (@)= (Ho(OIH, ()] +{THH, ()] +[H @K1} +{THT})S, (),

(11.117)
or, in the frequency (Hz) domain
W, ()= ([Hiu(2nf)][H;ﬁ(2nf)]r)Wﬁ(f) , (11.118)
with
* [H.(2mH] = [H,Q2nH]+{T}
H. (2 T
* [H,((2m))] = (27tf)2[<1)][( '(m.m‘)ﬂd)] [M]{T}]

e H,(2mf) =

1
ey’ (- f + 2L)

e [T} the rigid-body motion in the excitation direction {u(#)}

11.5.3 Random Stresses and Forces

Besides the responses of the dofs, internal forces or stresses should be cal-
culated to predict the strength characteristics of the structure itself.
The matrix of cross-power spectral densities of the physical stresses

(forces) Sc,.o,.(m) can also be calculated
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[So(@)] = [DGI[Sy 0 (@)][DG]", (11.119)
where

e [®] is the matrix of the stress or force modes

The stress or force modes [®;] can be calculated using the mode
shapes[®] and a so-called stress or force matrix [D] . The stress mode is
defined as

[®s] = [Ds][P]. (11.120)

When random loads are applied to the deterministic system, (11.119) can be
written as

(W (D] = [DIIPUHG RN Wep(DIH or27H1I®]'ID,]", (11.121)

and when random base accelerations are applied to the deterministic sys-
tem, (11.119) can be written as

[Woo, (D] = [DGIIPNH_2TNIIW . (NIH 6;(2nHIP]' [Dg]", (11.122)

with

H,(2 r
o [HCnpl= D01 D) a)
H;,(2mf) T
o 1H,,0n)1= -DGI@1=E D @] (M1{T}

1

1
e H,(2mf) =
Qn)’(f -1 + 2LHf)

e [T} therigid-body motion in the excitation direction {u(¢)}

A 3 mass—spring dynamic system, as shown in Fig. 11.8, is excited at the
base with a constant band-limited random acceleration W, .(f) = 0.01 g2/

Hz in a frequency range 5 <f< 500 Hz. The mass distribution is m, = 200
kg, m, = 150 kgand m, = 100 kg. The stiffness distribution is k, = 3x10°

N/m, k, = 2x10° N/m and ky = 1x10* N/m. The modal damping ratio for
all modes is £ = 0.05 or Q = 10.
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my

x3(t)
=
my

x5(1)
=
my

x,(1)
=

s,

Fig. 11.8. 3 mass—spring system with enforced acceleration at the base

The undamped equations of motion are

ml 0 0 i:l k1+k2 —'kz 0 xl O
0m Oy i, ¢+ ko kytkys k3|3 x, =30 ¢  (11123)
0 0 myl| z 0 —ky k|| x5 0
or (11.123) expressed in the relative motion {z(¢)} will result in
m 0 Ol z | |kj+ky, =k, O] 2, m 0 0|f,
0 my O3 5 ¢+ | ~ky kytky—ksly 2 1 =—| 0 my O[3 1 pu(r). (11.124)
0 0 my| 7 0 —ky ksl z 0 0 myl| !

The natural frequencies and associate mode shapes of the mdof dynamic
system are

94.35 -0.0224 0.0432 -0.0513
{fu} =1 201.73 {Hz, ®] = |_0.0482 0.0386 0.0535
299.53 -0.0743 —0.0636 —0.0210

The effective masses, for, respectively modes shapes 1, 2 and 3, are
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366.13
{M} =1 6497 | ke
18.90
The most important mode shape represents the maximum effective mass.
This first mode will show maximum responses. A 3x3 matrix W,.(f) of
PSD and cross- PSD functions of the acceleration will be calculated for
every frequency. The quadrature of diagonal terms of W,.(f) are the mean-
square values of the acceleration. Taking the square root of the mean-square

(auto-spectrum) values will result in the root mean square values of the
acceleration of the dofs x, , x, and x; . The plots of the PSD functions of the

acceleration x;, x, and x; are shown in Fig. 11.9.
The integration, to obtain the mean-square values, is done with the trape-
zium rule with a frequency increment Af = 1 Hz.

The rms values of the acceleration are

x1 30.27
{x}rms = x, (T ) 4172 ¢ -
B 60.52 | °
3

The force matrix of the dynamic system, shown in Fig. 11.8, is defined as

k, 0 0

The diagonal terms of the PSD function matrix W (f) are plotted in
Fig. 11.10.
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PSD acceleration
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Fig. 11.9. PSD values of the acceleration x| , X, and x3 (m/s?)%/Hz
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Fig. 11.10. PSD values of the spring forces (N*/Hz)
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1438x10° 0 0
J(Rg6(0)) = (Fpp)= /L (WosNNdf = o 1o71x10t o | N

0 0  0.604x10*

11.6 Analysis of Narrow-Band Processes

In this section some interesting properties of narrow-banded stationary
processes will be discussed:

e Number of crossings per unit of time through a certain level

¢ Fatigue damage due to random excitation

Besides the rms value of the response of deterministic structures exposed to
random forces, the above-mentioned properties are important properties for
further investigation of the strength characteristics.

11.6.1 Crossings

Consider the event that a stationary process x(¢) will cross the level o from
below with a certain positive velocity x(t) = v(¢) . One talks about a cross-
ing with a positive slope (see Fig. 11.11). N (t) is the number of expected
crossings for a time period 1. The random process x(#) is a stationary proc-
ess so the number of expected crossings does not depend on the time the

process starts. The sum of numbers of zero crossing will be a linear func-
tion in time, hence:

No(T, +71,) = No(T,) + Ny(Ty) . (11.125)

The number of positive crossings per unit of time v;,, that the signal x()

(13

will cross the level “o” with a positive slope (positive velocity), will be

defined as
Ny(t) = vot. (11.126)

The joint probability that the values of x(¢) and v(¢) are between certain
values, for all times ¢, is defined as

flo, B)dodp = Prob(a<x(t)<o+doand B<v(t)<B+dB). (11.127)
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Fig. 11.11. Positive crossings

The cumulative joint probability is defined as

F(o+do, B +dB) - F(a, B) = fwdufmﬁf(x, *)dxds, (11.128)
. B
F(o.+do, B +dB) - F(a, ﬁ)z%@dadﬁ = f(o, Bydodp,  (11.129)
where

e f(a,B) the joint probability density function
e F(o,PB) the joint cumulative joint probability function

Equations (11.127), (11.128) and (11.129) define the time per unit of time
x(¢) in the interval o + do. with a velocity of approximately v(¢) =p.
The number of expected crossings v;, per unit time through the interval

[o, o+ da] with a velocity v(r) = is estimated by dividing the amount of
time per unit time spent inside this interval by the time required to pass this
interval. The time 1 to pass (up or down) the interval [o, o + da] is

v = 9¢

1Bl
The amount of time per unit of time the signal x(¢) is in the interval
[o, o + do] with a velocity in the interval [B, B +dp] is f(a, B)dadp . The
expected number of crossings (up or down) v, per unit of time through the

d (11.130)

level a with all possible velocities v(¢) =B is

fla, Ej)jadﬁ = IBlf(, B)dP . (11.131)
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The expected number of crossings (up or down) v, per unit of time through
the level o with all possible velocities v(f) = is

)

Vo = f IBlf(a., B)aB (11.132)

The expected number of positive zero crossings v;, can be easily derived
from (11.132)

Ve = %LBf(a, B)aB. (11.133)

A special joint probability density function, as defined in (11.127), is the
case of a Gaussian process, i.e. a process with a distribution [Gatti 99]

2 .2
XX
1 ( 20° 2c§]

e
210,0.
X

flx,x) = (11.134)

Substituting (11.134) into (11.133) and performing the integration gives

+ 1 3 1 [—2(1_:1_2‘3_;] G)‘c _—;:2
Va = QJ BZﬂ:G .’ "dp = 2ne,’ (1135
with
e ol = E(x))-{EW)}’ = E(x) = j W.()df
0
o ol = EF)-{EGY = EG) = | enp*wa)ar
0

In general, we assume zero mean values of the displacement x(¢) and

velocity x(r). The number of zero positive zero crossings can be obtained
from (11.135) with o = 0

[ ey wap)ar
- (11.136)

[ waar
0

X

o, 1

.
Vo

- 2no, 2@
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The number of positive zero crossings v, (Hz) is also called the equivalent

or characteristic frequency of the random process. (11.135) can also written
as

. 2
Vo= s——e =vge °. (11.137)

For the mass—spring—damper system shown Fig. 11.5 the variance of the
relative displacement 0'22 and the relative velocity 0?: has been calculated in
(11.68) and (11.69).

The mean-square value of the relative displacement z(z) is given by

2 2 S{j
E{z()’} = 0, = —. (11.138)

4Co,

The mean-square value of the relative velocity z(r) is given by

.2 2 S,I
E{z (0} = o, = e (11.139)

With the aid of (11.136) the number of positive zero crossings per unit of
time v, (Hz) can be calculated,

e

a |
als
1]
s

The number of positive zero crossings per unit of time v, is equal to the
natural frequency f, of the sdof system, as illustrated in Fig. 11.5.

For the mdof dynamic system, as shown in Fig. 11.8, the number of pos-
itive zero crossings v; for all dofs will be calculated, assuming a random
base acceleration W .(f) = 0.01 g2/Hz in a frequency range 5<f<500 Hz.

The integration, to obtain the positive zero crossings per unit of time, is
done using the trapezium rule with a frequency increment Af = 1 Hz.
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X1
The positive zero crossings for the acceleration § ., . are

X3

203
{vo} =1 157 ; Hz.
128

k 1
The positive zero crossings for the forces in | k,  are
k3

106
{vo} =1 105 ; Hz.
128

11.6.2 Fatigue Damage due to Random Excitation

There are quite a number of failure modes, one of them is the failure of a
structure due to fatigue behaviour of materials. Fatigue appears when the
structure is exposed to oscillating loads (stresses). The material will crack
and failure occurs. Fatigue damage is caused by microplastic deformations
(strains) that will damage the structure of the material locally and accumu-
late to microcracks and ultimately to failure of the structure.

With the Palmgren—Miner rule one is able to predict the fatigue life of a
structure or part of the structure caused by cumulative damage when the
construction is exposed to oscillating loads or stresses.

At a certain stress level o, (in the case of random vibration the one-
sigma value the stress) one can take the allowable number of oscillations N,

from a so-called s—N curve. In general, the relation between the stress level
and the allowable number of oscillations, the s—N or Woehler fatigue curve,
is

N(s)s’ = a, (11.140)

where a and b are constants.
The modelof cumulative damageyas formulated by Palmgren and Miner,
the Palmgren—Miner damage function D(¢) [Gatti 99] is
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N(1)
D(1) = ZAD,.. (11.141)

i=1

We assume that the damage function D(r) is a nondecreasing function of
time that starts at zero for a new structure and is normalised to unity when
failure occurs; the instant of time #;,;,,. at which D(#q,.) = 1 -

The Palmgren—Miner rule can be formulated as follows:
if the i-th cycle occurs at the stress level o, at which, in accordance with the

s—N curve, N; cause failure, then the i-th increment of damage
1
AD; = .

1

(11.142)

If we group cycles of approximately equal amplitude together, we will have
a situation in which we can identify n; cycles at the stress level ;. Then

. n; .
each one of these groups i will produce N incremental damage.
i
The failure condition becomes
n.
D = ‘4 =1. 11.143

Nothing is stated about the sequence of the stress levels.

The number of positive crossings at the level a is given by (11.137)

2 2
_a o

. 2 o2
+ _ cx 26:

Vv =
¢ 2mo,

+ 20')2‘
e Voe

With (11.137) we are able to calculate the number of peaks n,(a) per unit
of time of x(z) in the range o < x(f) <o + do

+
" dv

ny(0) = Vo= Vo, 4o = —Eida, (11.144)
thus
o
+ 0l 205
n(a) = vo—e  da. (11.145)
Gx

The total number of peaks during the time period T is given by n(a)T.
We will introduce (11.145) into (11.143) and will replace the summation
with an integration,
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R S ("))}
E(D(D} = Y5 = TJO Mo (11.146)

The cumulative damage function D(#,.) has been replaced by the

expected value of the cumulative damage function E{D(T)} at the time T
the structure will fail.

Substituting into (11.140) the number of allowable oscillations at stress
level s = a is

N(a) = aa™. (11.147)
Equations (11.145) and the (11.147) substituted into (11.146) will result in

2

o
= voT = e vyT b b
E{D(T)} = TIO%da = ii‘[o o *le a0 = —‘;—(ﬁcx) F(l +§). (11.148)

Assuming failure at E{D(T)} = 1, the time to failure can now be calcu-
lated
a

vi(426,) F(l + ’5)

T =

(11.149)

oo

The Gamma function I'(z) is defined by I'(z) = j e dr.
0
An sdof dynamic system is excited at the base with random acceleration

u(t) with a PSD function W.(f) . The sdof system is shown in Fig. 11.5.

The relative rms displacement z_,, of the mass can be calculated with

(11.68)
S QW)
Zrms = 3 = 3
4Co, (2nf,)

The rms stress in the spring is

with
e k the spring constant (N/m)
e A the cross section (mz)
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The s—N curve is given by N(s)sb =a
with

1.56x10%
4

a
b

The natural frequency of the sdof system is f, = 100 Hz, the mass 100 kg
and the modal damping ratio { = 0.05. The cross section of the spring
A=10"m% Ina frequency range from 50-500 Hz the PSD of the base
acceleration is W, = 0.1 g/HzZ.

The spring constant is k = (2nf,)’m = (21100)*100 = 3.948 10’ N/m.

The rms value of the relative displacement

I J10x0.1x9.812
nf,)’ (2m100)°
The rms stress in the spring becomes

_ KzZpms  3.948x107x6.229x10™*
AT 10

= 6.229x10™ m.

= 2.459x10° Pa.

The number of positive zero crossing vy = f, = 100 Hz.

The time to failure 7', the fatigue lifetime, can now be calculated
39
a _ 1.56x10

T = =
vg(ﬁo's)bl"(l + IE)) 100(/2x2.459x10%) 'T'(3)

= 533 s.

11.7 Some Practical Aspects

In most cases the random mechanical loads for spacecraft and subsystems
of spacecraft are as illustrated below. The PSD values of the acceleration
depend on the frequency (Hz). In general, the frequency range is between
20-2000 Hz. The specification must be accompanied by the Grms value of
the random acceleration in the frequency range. An example of a typical
acceleration specification is given below.

e 20-150Hz 6dB/oct

e 150-700Hz W, = 0.04 g*/Hz
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e 700-2000Hz -3 dB/oct.
e Grms=73¢g

The graphical representation of the random acceleration specification is
shown in Fig. 11.9.

1.0000
0100
S R, R
S » ot
20— (s
= \(ms)
w
& | R / Ry
1000 100.00 1000.00 10000.00
Frequency (Hz)

Fig. 11.12. Specification PSD acceleration, Grms=7.3 g (courtesy NASA GSFC,
FEMCI).

The octave band is defined by

5
fi

The number of octaves x between two frequencies f, and the reference

=2l (11.150)

frequency f,; can be calculated by

fx X
&= (11.151)
f;'ef

and x can simply be obtained with

In L‘—) log Q)

ref. ref-

inQ2) = Tog(2) (11.152)

The relation between the PSD values depends on the number of dBs per
octave n dB/oct and the number of octaves between the two frequencies f,

and f,... The relation in (dB) between the W.(f,) and W.(f,) is
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fe
101 Wil e :f) dB 11.153
WG ) =™ gy P (11.153)
or
f"x nloj n
W) (i) o g isa
W,','(fref) - IOg(z) - ref) - ref) ’ ( ' )

The angle m (dB/freq) can be obtained by

lo W’; (o)
log Wit'(fx ) B lOg Wu (fref ) & Wu (fref ) n
B = =z (11.155)
lng x~ lng ref log f_x) 3
ref.

Now we can calculate the Grms value of the acceleration specification.
(g*/Hz)

wep | ™ (dBfoct)

Fig. 11.13. Calculation Grms (g)

The G, value of the random acceleration specification can be calculated
(see Fig. 11.13) using

Gms = ,\’A1+A2+A3, (11156)

with
W i e 2
_{(,) }(w
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my
W '3—+l
° A= —~ fs (J;—“) -1 ,(gz), ’—;—Z;t—l and m, <0 (dB/oct)
=24 VP
3
e For %2 = -1 we may use L'Hopital’s rule and

Ay = Wf31n(j;—‘3‘) = 2.303Wf,log f—;‘) @

11.8 Problems

11.8.1 Problem 1

Calculate the Grms value of the following random acceleration specifica-
tion.

e 20-150Hz 6dB/oct

e 150-700Hz W, = 0.04 g*/Hz

e 700-2000 Hz -3 dB/oct.

Answer Grms=7.3 g.

11.8.2 Problem 2

A stationary random process has an autocorrelation function R, (1) , which

is given by R,(1) = Xe ™, where a >0, [Norton 98].
Determine
1. the mean-square value

2. power-spectral density function S, (w) of the process

aX
2 2

Answers: X, S (0) = J R (v)e7dr.

(a"+®)
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11.8.3 Problem 3

The single-sided spectral density of the deflection y(¢) of an electric motor
bearing is W, ()= W, = 0.05 mm?/Hz over the frequency band from 20-
2000 Hz and is zero for all other frequencies. Determine the mean-square
(m2), root mean-square deflection (m) and obtain an expression for the
autocorrelation function R (1) (m2).

05x107°

Answers: 9.9x10'5, 9.95x10'3, 0. T [sin(2720007) — sin(272071)] .

11.8.4 Problem 4

A structural component at its static equilibrium position is represented by a
rigid slender bar of mass M (kg) and length L (m)], a spring k (N/m) and a
damper ¢ (Ns/m) as illustrated Fig. 11.14.

3L

L
4

Sl R/(%)

<0 a
« = e . N

Fig. 11.14. Structural component + forcing function

The tip of the bar is subjected to a pulse f(¢) (N) with an autocorrelation
function R(1) (N?) as shown in Fig. 11.14. By modelling the system as an

sdof system, expressed by angle ¥, with an equivalent mass, spring and
damper, and derive an expression of the output spectral density Wy(f) .

Answers: 25 M1 ﬁ+3L1§>c+ Lt‘}k £,

192
sin
aT ( 2T)

21t wT
2

28 2.2\ (3
(4Lk—192m ML) +(4Lcw)

Spo(0) = 5 Wes(f) = 2859(@).
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11.8.5 Problem 5

A response x(¢) has an autocorrelation function R (1) that is given by

R.(1) = B .
¢ Define the standard deviation o, of x(r)

Define the standard deviation of o, and x(¢)

Define the number of positive zero crossings vg ,

Define the number of zero crossings through x(¢) = y

s
Answer: B, BJ2a, vg , = }u/g, Vo oy = }Ujge % [Scheidt 94]




12 Low-Frequency Acoustic
Loads, Structural Responses

12.1 Introduction

By acoustic vibration we mean the structural responses of structures
exposed to acoustic loads or sound pressures. In this chapter we discuss the
low-frequency acoustic vibrations because the equations of motion are
solved using the modal approach, namely mode superposition [Madayag
69]. In the higher-frequency bands statistical energy analysis (SEA) is a
good substitute for the classical modal approach.

In general, the modal characteristics of the dynamic system are calcu-
lated with the aid of the finite element method [Cook 89]. The accuracy is
determined by the detail of the finite element model and the complexity of
the structure. As stated above, the equations of motion will be solved using
the classical modal approach and therefore linear structural behaviour is
assumed.

The structure is assumed to be deterministic, however, the acoustic loads
have a random nature. In this chapter the sound field will be assumed to be
reverberant (diffuse). The sound intensity is the same in all directions.

Lightweight and large antenna structures and solar arrays, of spacecraft
(Fig. 12.1) are very sensitive to acoustic loads during the launch phase.
Spacecraft external structures are severely subjected to acoustic loads.

12.2 Acoustic Loads

In the dimensioning design specifications of spacecraft, solar arrays and
antennae, acoustic loads are specified. These acoustic loads are generated
during launch or in acoustic facilities for test purposes. It is very common
to.specify.a reverberant sound field, which means that the intensity of the
sound is the same for all directions.
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Antenna dish

g

2 >
g —>im = £
& 5
B 21 | | Spacecraft 3
5 S
] = 75]
A N

L] i j L]
Fig. 12.1. Spacecraft structures exposed to acoustic loads

In general, the acoustic loads are specified as sound pressure levels (SPL)
with units of deciBell (dB). The SPL is defined as

2
SPL = 1010gL§’7], (12.1)
ref.

where
e p isthe rms pressure in a certain frequency band, in general one-
octave of one-third octave band

® p. isthe reference pressure 2x10~ Pa
The x-th octave band of two sequential frequencies f, and f, is given by

= =27, 12.2
7 (12.2)

in which:
e x = 1the octave band applies and

—_

* x = %the one-third octave is applied, thus}12 =2’ = 1260
1

The centre frequency f, (Hz) is defined as

fc = Alfminfmax’ (123)

where
® foinethe minimum frequency in the frequency band (Hz)

® f . themaximum frequency in the frequency band (Hz)
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The frequency bandwidth Af (Hz) is

Af = frax = fin - (12.4)

With Smax = 2" the bandwidth becomes

Af = (25 - 23)/0- (12.5)
When:

e x = 1the octave band Af = 0.7071f,

* x = %the one-third octave Af = 0.2316f,

The power spectral density W,(f,) (PaZ/HZ) of the sound pressure is
defined as

2

W,(f,) = ‘Z—f. (12.6)

12.3 Equations of Motion

The equations of motion of a discrete number of coupled mass—spring sys-
tems with mass matrix [M], stiffness matrix [K], dynamic force vector
{F(#)}, displacement vector {x} and acceleration vector {x} can be writ-
ten as

[MI{x} + [K){x} = {F(n)}. (12.7)

The damping will be introduced later.
In general this discrete dynamic system is a finite element representation
of a real structure.

The force vector {F(#)} consists of a pressure (difference) applied to the
area associated with a node. One force applied to the node is

Fi(r) = J p(1)dA=p(1A;, (12.8)
Ai

where
e p(t)wisithe transient pressurerexposed to the surface (Pa)

e A, isthe area associated with node i (m2)
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e F(r) is the nodal force (N)

Fig. 12.2. Node i with associated area A; exposed to pressure p

For a diffuse sound field a correlation exists between the nodal forces.

Radiation effects are not taken into account.

The displacement vector {x(7)} will be projected onto the independent
mode shapes, the modal matrix [®], multiplied with the generalised coor-
dinates {n(?)}

{x(} = [@H{n(}. (12.9)

Using the well-known orthogonality properties of the mode shapes with
respect to the mass matrix [M] and stiffness matrix [K]

[@1'[MI[®] = (5;m), [@1'[KI[®] = (§,;mA) , (12.10)

where
e §; the Kronecker delta

e m; generalised mass
e ), eigenvalue of dynamic system

The coupled equations of motion are decoupled and expressed in the gener-
alised coordinates {n(z)}. We will also introduce the damping ratio {; and

the modal viscous damping term 2¢;,/Am,(t) = 2§,0m,(t) . The decoupled
equations of motion become

0, + 250, + o, (1) = M = f(1), i e, (12.11)

l

The solution, with zero initial conditions, is

Qu)ts n(DdT

n,(1)= J f( -T)dr. (12.12)

—o0
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The damped natural (circular) frequency w, (rad/s) is defined as

Wy = o1, (12.13)
In the frequency domain, with I(®) = r n(t)e’ at

H(o)
2
w;

IM(w) =

F(w), (12.14)

with
2

* H(®) = —— d : the frequency-response function
(0; - ") +2j 0,0

e F(w) = J fi(t)e_j “'dr the Fourier transform of the force function (t)

The ergodic stationary cross correlation function Ryy (D) is given by

T
.1
Rop (D) = Tlgnwﬁj_Tni(t)nj(t—t)dt. (12.15)

The cross-power spectral density function S, (®) is defined as [Harris
74]

Sy, (@) = J.m Ry (Ve dt, (12.16)

and the reverse expression [Harris 74]
Ryp (D) = zinf S, (@) do. (12.17)
Equation (12.16) and (12.17) form the Wiener—Khintchine relationships

[Harris 74]. The crosscorrelation function of the generalised forces f(r)
and (1) is defined as

T
Ris (1) = TIEHN%' fiOf(t-ydt. (12.18)
-T

orm, is
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T T T
Rfifj(") _ Th_Iszi {0y {F(OHF(-1)} {‘Dj}dt (12.19)
-T

m;m;

T
Re (1) = nﬁ{mﬂm[ lim = T{p,«u)}{p,.(r—r)}Tdt} (A0}, (1220)

where
e (A) is the diagonal matrix of areas associated with the nodes of the
finite element model (Fig. 12.2)

Finally, the crosscorrelation R;.(t) can be related to the cross correlation
iy
matrix of pressures all over the surface of the structure.

Rig(D) = —— (8} (AR, , (DAY (9}, (12.21)
i

where
* [R,,(t)] is the matrix of cross correlation functions of the pressures
iFj

over the surface of the structure

Thus the cross-power spectral density becomes
1
Seg(©) = ——{0,} (A Sy, () NA) {9}, (1222)
i

where
. [Sp,-p,(“))] the matrix of cross power spectral densities of the pressures

over the surface of the structure

The matrix of cross-power spectral densities of the pressures all over the
surface of the structure and related to the nodes i=1,2,...,n is

SPlPl(m) SP]Pz(O)) T SP]Pn(m)_

SP2P|((D) SPsz(w) t SPan((D)
[Spp,(@)] = _ . (12.23)

_Spnpl((o) SP,.Pz(m) t SPnPn(w)

Equation (12.16) can thus be written as
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Snn (@) =
Tlgnm 27([ ( @) (x)da)(J.:l hi(B-T)f(1— (B - x))dﬁ))e‘f"”drdt (12.24)

and
Sn,-n,-((’)) = r Rfif]_(t—oc+[3)e_j°)(1_O“Lﬁ)dt(‘rc hi(a)e_jmda)(_r hj(B)eijdB).

(12.25)
Using (12.14) we obtain for Snm,-(“))

H, A)[S A H
(o - (@) {037(A)[ pp<w)1< {0} (@) 1226

O)Q)mmj

The matrix of cross-power spectral densities of the generalised coordinates
n; and 7; is

[snn«n)]—( BAO) @17 (s, , (o )1<A>[<I>]<J—> (12.27)

mlml ; j

with
2
* Hi(0) = —; : : the conjugate frequency response
(0; - 0)-2if,0,0

function and H,.(co)H:(u)) = |H,.((n)|2.

Equation (12.23) can be written as

PlPl(m) Cplp( ) - Cplpn((’))—

Copp, (@) Cpp (@) .. Cpp (@)
[Spp (@] = Sy(@)] A (12.28)

Cop, (@) Cpp, (@) - Cp p (@)

with

* S,(») areference power spectral density function of the applied pres-
sures. This reference power spectral density of the pressure is,
in general, related to the sound pressure levels of the sound

field exposed to the surface of the structure.
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* C,,(w) the correlation (coherence) function between the pressures at
iPj

the nodes i and j.

Some typical pressure fields can be described:
1. If the dimension of the surface is less than a quarter of the wavelength

Cp,-pj((‘o) ~1.0. The wavelength A = 2% with the wave-number k = (—3

and c is the speed of sound. At room temperature the speed of sound
under 1 Bar pressure is ¢ = 340 m/s

2. If the sound pressure field is completely random (rain on the roof) the
off-diagonal terms in the correlation matrix [Cp,-p,(“))] are zero and the
diagonal terms unity, hence [Cp,-p,-(“’)] = [I].

2

3. A three-dimensional wave field with uniform intensity (1: f)’—c) in all

directions is commonly called a reverberent field. p is the density of the

air, p=1.2 kg/m3. The coherence function Cpp(®) is

o, x x) = SMK=XT) yaAgA 551 and |x—x] is the distance
(klx—x')

between two points.

CPin(

Equation (12.26) can thus be written

H{(0)Sy(0)J{(0)H; (o) ’

Son (@) = R (12.29)
[ e Ridd b
where
2 . . 2 T
J;j(w) the joint acceptance Jy(®) = {¢;} (A)[C,, (0)1(A){¢;}
In accordance with (12.27)
Hy(®) H; (o)
[Sn, (@] = S (@) (=@ N(H—), (12.30)
w;m; o;m;
with the matrix of joint acceptances
[T5(@)] = [®)(A)(C,, (@) (A)[D]. (1231)

Smith [Smith 65] introduces the modal impedance Z,(®)



12.3 Equations of Motion 255

mo;
Zi(O)) = m) (1232)
and (12.30) becomes
Sp(®) 1 2 1
=2 T _\Jo -
[Syn,(®)] 2 (Zi(m)>[l,,(m)]< Z*,~(co)>' (12.33)

The matrix of cross-power spectral density of the physical displacements
S, ﬂj(m) can now be calculated
[S;x(@)] = [q)][Snmj(G))][‘D]T- (12.34)
The matrix of cross power spectral densities of the velocities is
[S,, (@] = 0[S, ()], (12.35)
and the matrix of cross power spectral densities of accelerations becomes
[S;: (@] = 0[S, ()] (12.36)
The matrix of cross-power spectral densities of the physical stresses
So,.o,(w) can also be calculated
[So5,(®)] = [q)U][Snmj((O)][‘I’G]T, (12.37)
where

e [®,] is the matrix of the stress modes

The power spectral density is symmetric with respect to ® = 0 and, if we
replace the circular frequency o (rad/s) by the number of cycles per second
f (Hz), the power spectral density function S(®) can by replaced by

W) = 2S(w) . (12.38)

In all equations the power spectral S(®) density must be replaced by W(f)
and o by © = 2=nf.

A rigid plate with a total area 4A (m?) and a total mass of 4m (kg) is
vibrating supported on a spring with a spring stiffness 4k (N/m). The rigid
plate is idealised in a finite element model with 6 nodes and 4 quadrilateral
elements. The damping ratio is . We will calculate the responses of the
mass—spring system assuming:
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1. afull correlation of the pressures between all nodes (full correlation
matrix)

2. awhite-noise type of correlation between all nodes (diagonal correlation
matrix)

Mass Spring System

Rigid Plate Area is 44

Fig. 12.3. Vibration rigid plate exposed to an acoustic pressure

If a unit static pressure is applied to the plate the equivalent nodal forces
represent the associated areas of the nodes. The nodal forces depend on the
shape functions describing the finite element. The natural frequency is

f= 5% A/E (Hz). For the rigid plate the matrix of the associated areas <A>,
m

the lumped mass matrix [M] and the mode {¢} are very obvious.

2
The power spectral density function of the pressure W,(f) (I;I_az) is

s W,(N = W, for %fOSfSZfO
* W,(f) = 0 elsewhere

ol LElUMN Zyl_i.lbl
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The generalised mass m; = 4m.

1
4

The joint acceptance Jf,(f) becomes
T = {0} (AC,, (DA 0}
1. For a full correlation matrix (plane wave) with components
Cp,_pj(f) = 1, the joint acceptance becomes Jfl(f) = 16A°

2. For a diagonal correlation matrix (rain on the roof correlation function)
with components Cop (N = d,;; the joint acceptance becomes

T () = 4A°

The power spectral density of the generalised coordinate m becomes,
(12.33),
2 2
H,(H WE()‘)J
Wnn(ﬁ=| ) 4 2“’
(21th) my
The power spectral density of the accelerations of the generalised coordi-
nate n is
2 2
nn . m%

’

with
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(-7 T

o f  the natural frequency (Hz)

LAGE

The power spectral density function of the responses of the nodes is

H W,
W11 = 01Wy, te = (£) AW 7
; m’
Using the formula of Miles [Miles 54] the root mean square value of the

acceleration of the generalised co-ordinate 7 is

. _ Jll E _ Jll 1_t
Nrms = ml'IZfOQWP(fO = ml.lzfoQWo

with the amplification factor Q = and { the damping ratio. The rms

2C

value of the 9 dofs becomes (diagonal terms)

X1

—_—

X2
X3
,i:.

“4 _ . _ J“ TC

1 xs = [¢]Nrms = m_l ifOQW0<
X
x7

xg

. \
— e e b e e e e e
b V"

X9
Jrms

A simply supported beam with length 4L (m) is idealised by 5 nodes
(Fig. 12.4). The beam has a unit width b (m). The total area is 4Lb. The
total mass of the beam is 4mLb (kg), where m is mass per unit of area (kg/

mz). The first mode shape ¢,(x) = Sinjtt_])j is associated with the natural fre-

2
quency f, = %t_}t -(Hz) and the second mode shape

mb(4L)

Oy (x) = sin%’—zfis associatedpmwithy the second natural frequency
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2
fHr= 4f, = (2270 El 5 (Hz). The damping ratio is {. The beam is
T Nmb(4L)
exposed by a random pressure field (raindrops on the roof), hence the
coherence matrix is [Cpipj(f)] = [1].

1 2 3 4 5
A A\ A4 A4 A
— > 4L

Fig. 12.4. Supported beam subjected to acoustic load

The modal matrix of both modes, the mass matrix [M] and the diagonal
matrix of areas (A) are

00 Loo00 Loo0o0

lﬁl 2 2

2 01000 01000
[®1=|1 o|,Ml=mLbloo100|,and (A) =Lb[00100|-

Lﬁ-l 00010 00010

2 00004+ 00004

L 0 0] i 2) i 2

The generalised masses become
[©1'[MI[@] = 2mLb Ll) ‘1’] :
and the joint acceptance matrix is

2 2
Lﬁmhﬂmﬂmwmmum@p=Juh2=ﬂwaﬂ,
P I 01

The power spectral density function of the generalised coordinates becomes

e
H. H. W
[wm.(f)1=wp(f)<;—(’)>w?,~(f)1< 12m>= zpm4 1 ’
i o m, w;m;  2m°(2m) . |H,)?
- 2—

ol LElUMN Zyl_i.lbl
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1

O T
[ = 1

[T+ [248T
Furthermore we find
W, (D] = [@I[Wy, (DI[D]

0 0 0 0 0

H 2 H 2 H 2 H 2 H 2
00.25| ] +0.5| 2 0.353| ] 0.25I ] -0.5| 2 0

i 5 fi i A

W,() H,| H| H,
= —=—lo 0.353u 0.5l oasalil g
m°(2m) f‘l‘ f‘: f‘:

2 2 2 2 2
H H H H H
0 0.25l il -0.5| 2 0.353| | 0.25I ] +0.5| 2 0
f Pis fi fi 5

0 0 0 0 0]

12.4 Problems

12.4.1 Problem 1

Recalculate the second example (simply supported beam, Fig. 12.4) with a
fully populated -correlation matrix Cop(N =1 for every i=1,..,5 and

Jj=1..5.
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12.4.2 Problem 2

Recalculate the second example (simply supported beam, Fig. 12.4) assum-
ing a reverberent sound field. The correlation matrix of the reverberent

sin(|x; - x'}))
(i =)

Assume for example |x, —x'y| = L, etc.

sound field is Cp,-p,-((’)’ x,x') = for every i=1,...,5 and j=1,...,5.
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13.1 Introduction

Statistical energy analysis (SEA) originated in the aerospace industry in the
early 1960s. Today, SEA is applied to a large variety of products, from cars
and trucks to aircraft, spacecraft, electronic equipment, buildings, consumer
products and more.

SEA is based on the principle of energy conservation. All the energy
inputting to a system, through mechanical or acoustic excitation, must leave
the system through structural damping or acoustic radiation. The method is
fast and is applicable over a wide frequency range. SEA is very good for
problems that combine many different sources of excitation, whether
mechanical or acoustic.

With the SEA a statistical description of the structural vibrational behav-
iour of elements (systems) is described. In the high-frequency band a deter-
ministic modal description of the dynamic behaviour of structures is not
very useful. The modes (oscillators) are grouped statistically and the energy
transfer from one group of modes to another group of modes is statistically
proportional to the difference in the subsystem total energies.

Readers who are interested in a more detailed description of the SEA
method are encouraged to read the following interesting literature [Lyon 62,
Ungar 66, Barnoski 69, Cremer 73, Lyon 75, Norton 89, Lyon 95, Keane
94, Eaton 96, Woodhouse 81]. A very clear discussion and explanation
about the SEA can be found in [Nigam 94, Chapter 10].

SEA is attractive in high-frequency regions where a deterministic analysis
of all resonant modes of vibration is not practical.
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13.2 Some Basics about Averaged Quantities

The average over all time of the square of the displacement x(¢) is defined

as [Smith 65, Keltie 01]

T
() = T‘E“ﬂf")ﬁ” = JRX(OX (@),

with

x(1) = RIX(0)®'] = Acos(ot-1),
or

x(1) = S[X(0)d™] = Asin(wt-1),
where

¢ X(w) the complex amplitude dependent upon the frequency
e A the amplitude of the oscillation
e O the phase angle

We can write x(¢) as follows

x(1) = RX(@)d®'] = R(X)cos(0t)-3 (X)sin(w1),

and

x(1) = 3[X(0)d] = R(X)sin(wr) + 3(X)cos(wt).
From this we can conclude that
e R{X(w)} = Acos®
e 3{X(w)} = Asin®

oo SX@)
@Y = R (X(w)}

The average value of (xz) becomes

2% = [REX(0) M ({ cos(0n) 1) - 2R{X(0) }S{X()} { sin(wr) cos (wr))

+(IS{X(0) ) {sin(0n)}’ .

The mean value of
2n 2z

1 (o . 2 1 (o 2
—_[ (sinwt)’dt = 1, —j (coswi)’dr = 1 and
o), ),

(O) ®

(13.1)

(132)

(13.3)

(13.4)

(13.5)

(13.6)
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2n

Lj;sinmtcosmtdt =0 13.7)
2n,
®
resulting in
() = JURX@)I + (3K (@) (13.8)

We know that the modulus of a complex number X(®) can be obtained
from

X))’ = R{X(@)X(0) } = [R{X(0)}]* +[S{X(w)}]*. (13.9)

So we can express (13.8), using (13.9), as
() = RO+ [SEK@I} = JRX(@)X()') (13.10)
() = 3RE@X (@) = JX(@). (13.11)

Furthermore we can derive from the previous equations that

(xx) = %ER(X((»)X*((D)) = %SR(imX(m)X*(co)) = %EK(/'(DIX((D)IZ) =0, (13.12)
and

(F8) = %ER()Z(m)X*(m)) - %%omX(m)X*(m)) - %‘R(j(obi’(m)!z) =0. (13.13)

With
X (w) = RX, +/3X, and X,(0) = RX, +j3X,
and with

(x,%) = %%(Xl(m)X;(w)) = %Si(jmxl(m)x;((o)) = %’(mxlsxz-sx,mx2),

(13.14)
and
(xpx)) = %m(xz(m)xl*(m)) = %Sx(ijz(m)xl*(m)) = ?2‘—°(9tx13x2-3x19tx2),
(13.15)
we can prove that
(xpx2) = —(xpx,), (¥1%2) = ~(x2x;) and (x,xy) = -(i12> . (13.16)

ic system is given by
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mx+cx+k = F(r) (13.17)

The average input power IT,, is, with x(1) = X(0)¢’® and F(¢) = F(0)e'™

M, = (Fi) = %%{F(m)}é*(w)}. (13.18)

If the averages are applied to (13.17) we obtain
m(ix) +c (i) + k(i) = (Fi) = I, . (13.19)
With (xx) = 0 and (xx) = 0 (13.19) becomes

.2
ni = C(X) = HdiSS . (1320)

n

Equation (13.20) means that the average power IT;, introduced in the sdof
of (13.17) is equal to the average dissipated power Il . The dissipated
power Il can be written as

My, = (&) = 20km{) = 2mlo, (i) = mCo X,  (1321)

or

M, = mlo X)) = 2mlo, () = mo,(+), (13.22)
with
e n theloss factor n = 2(

The mobility function Y(w) is defined as

_ @)
Y(w) = Flo) (13.23)
Thus, X(m) = Y(w)F(®) and
.2 _ ll . 12 _ l * *
o = Skl = 2@ F@F @F ©))
2(1 * 2, .2
= M@P(S{F@F @))) = Y@ (F. (13.24)

The average power I1,, = (Fx) can be written as
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I, = (Fx) = -%{F(w)x (0))} = —|F| R{Y (0)} = —mnw IFI*IN’* (13.25)

I, = %IFIZ%{Y*(O))} = %IFIZEK{ . } = %IFlzlleiK{Z(o))} (13.26)
Z (o)

o, = %lF(m)lZIY(w)lzsk{Z(w)} = %mnm,,lF(m)lzlY(m)|2 = %mna)ﬂ 2 (13.27)
with
.« Y= £
w12
w, ﬂ
Z(®w) = —— the impedance function

Y()

A compedium of approximate mobilities for built-up structures in given in
[Pinnington 86].

L

Fig. 13.1. Sdof dynamic system

The sdof dynamic system, shown in Fig. 13.1, has a natural frequency
o, = 2nf, = 208.2 Rad/s. The mass is m = 150 kg. The steady-sate

oscillating force F = 100 N produces a velocity v = X = 02 ms.
e Estimate the loss factor 1.

The average input power is given by IT,, = %FX.

The average input power is also given by (13.27), I1,, = %mnwan .

When both previous expressions for the input power are compared with
each other we can write an expression for the loss factor n
F 100

ns= =
mo X 150x208.2x0.2

= 0.016.
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The averaged power of the velocity x can be expressed as

& = [ wndr, (13.28)
0

however, assuming an ergodic and stationary random process and the aver-
aged power of the force F(r) conform to (13.28), we can state

(F% = J We(Hdf, (13.29)
0

with
® W._.(f) the one-sided power spectral density function of x(7)

e  W.(f) the one-sided power spectral density function of F(¢)

In a certain frequency band with a bandwidth Af and a centre frequency
f we can express (13.28) and (13.29) as

()ar = W_(DASf (13.30)
and
(FBar = We(HAF. (13.31)
Using (13.24) we may write
W) = YOI W) (13.32)

The averaged power of x(r) becomes, Wr(f) = 25x(0),

oo

(x)) = j W..(Hdf = J YOI’ W (Hdf = P [Y(0)]*Sp(0)do, (13.33)
0 0 oo

Jjo

and with the admittance function Y(®) = — .
m[((on -0 ) + 2]C('00)n]

The integral f |Y(m)lzdo3 has a closed-form solution [Newland 94]. If

. oo 2 2

B, +j0B (A B+ A,B

V(@) = — 28 ihen J‘ V(o) do = “AoB1*4250)
Ag+jwA, - oA, oo AoA Ay

With
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* Ay = mo,
e A =m2lo
* Ay=m

[ ] B0=0

e B =1

The integral J- |Y(m)|2d0) evaluated becomes

- n(A,B; + A,B;
j|Y(0))|2d60= (AgBi +4,By) &

= . (13.34)
oo ApA A, 2m*Co,

Equation (13.33) can be further approximated assuming lY(pI® s very
peaked and reasonably constant PSD function Wg(f) = 2Sx(®) in the

neighbourhood of the natural frequency f, . This gives

Wo(F)
() _f W..(Ndf = Z—E - |Y(co)12SF(o))dmz%J_MIY(w)Izdm. (13.35)
Thus

() = F(f“)f Y(@)|*do Welh) . Welh) (13.36)

" lem’nlf,  smimny,

Equation (13.36) is in accordance with [Keltie 01].
The total average energy (E) becomes

2
(E) = (T+U) = (%mi2+%kx2) = %(m(i2)+k(%)) = m(i) (1337)

n

because (J&z) = (0,2, (x) and k = mmi. Thus, the average energy (E) is
now

We(f) _ Sp(@y)

= . 38
8mmnf, 2mno, (13.38)

(E) =

Referring to (13.22) the average damping energy can be expressed as fol-
lows

gies = mnmn(i2> = nw,(E). (13.39)
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. . .2
Furthermore we can derive an equation to calculate (x )

. . w
() = 0 (5 = gan F(f“), (13.40)
m
with
e (O the amplification factor with Q = Eli = 111

If we express the average (rms) input power IT,, (13.27) in the PSD
function of the random force we obtain the following expression
_ mn, "~ 2 _ WF(fn)
n = 5 J_mSF(w)IY(w)I d(o~————4m : (13.41)

The average power put into the sdof system will be dissipated in the
damper, thus in accordance with (13.22) we find

<x2> = WF(fn) )
8m’ TNy,

(13.42)

This is equal to (13.36).

13.3 Two Coupled Oscillators

Consider a simple two-sdof system as shown in Fig. 13.2. The coupling ele-
ment between the two sdof’s is a linear spring and is nondissipative. The
quantities of interest in this section are the average energies of each oscilla-
tor and the average energy flow between them.

If the coupling element is a spring with spring stiffness k,, the equations

of motion for the coupled oscillators, as shown in Fig. 13.2, become
[Elishakoff 83]

myxy +cyx + kx, +kyp(x, - x,) = F, (13.43)

m2.£2+C2x.2+k2x1+k12(X2—x1) = F2, (1344)

with

kl k2 k12
[ ] (Dlz -_’0)2= —,(1)12:

m m, mym,

* ¢ =28, Jkymy, c; = 28, Jkym,
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Cy ¢y
o — =20, = =2(w
m, Cl 1’m2 CZ 2

F\(n) Fy(1)
Coupling

Element “L”

"'g{")

Fig. 13.2. Two coupled oscillators [Ungar 66]

We did not take into account mass coupling and gyroscopic coupling. This
is discussed in [Lyon 62]. Adding the mass and gyroscopic coupling com-
plicates the analysis unnecessarily.
Equations (13.43) and (13.44) become

; ., ) F,

x1+ 28,0, x1 + 07X, + my0p,(x, - x,) = o (13.45)

1

F 2

. . 2 2
X2 +28,0,x72 + 03x, + m @), (X, —x,) e
2

(13.46)

We assume that the forces F, and F, are independent of each other. The
power supplied by force F, is (F,x;) and the power supplied by F, is
(Fyx2) .
(Fii) = my(Ein) +2m, 8, (1) + (0] + myn,) (x, 1) - mymyoh (x8)

| (13.47)
(Fyi) = my(Easa) +2myly, () + (myo) + mypy) (xyta) - m mywy (x,5)

(13.48)
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(Fpin) + (Fyi) = 2m,Cyo, (51) + 2m,Com, (33) , (13.49)

which states that the total power supplied is dissipated in the two dampers.
The coupling element (spring) is nondissipative. The power flow I1,, from

oscillator 1 to oscillator 2 is defined as (negative sign introduced to be con-
sistent with average damping energy)

2 . mlmszz "k
My, = —mymypp(0x) = ————RXKX; ). (13.50)

We will proceed to evaluate these averages in term of spectral densities.

Assume
Lt 1
Xy X, (®)

Equations (13.44) and (13.45) can now be written as follows

P 26,00, + co?+m20)%2 “’"2‘0?2 X, (0)
‘mlmfz —o’+ 26,00, + mg +m1mf2 X, (o) ]
Fi(0)
=4 ™oL ass
Fy(w)
my
with the determinant D(®)
D(w) = 1‘14(04'1'1‘13"33—1“2@2 "'jz‘hco1 +4, (13.52)
with
o A, =1
* Ay =250, +0,)

2 2 2
o A, = {0+ 0+ 0,(m +m,)+4(,{,0,0,}

°
>
|

2 2 2 2
= 2(§,0,0, + 0,0, + §;m 0,0}, + {my0,0},)

2 2 2 2 2 2
* A = (0]0; + m ®0), +m,n,0],)

With the aid of Cramer’s rule we obtain
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Fi (o) I
m, 20y
F,(o
L) _ o + 25,00, + ) + m,0,
X () = ° Do)
___1 2 . 2 2 2
X](m) = m1m2D(w)[{m2F1(m)(_ o + 2_]C2(0(02 + (1)2 + mlwIZ)} + m1m2m12F2((1))] s
(13.53)
and
2 . 2 2 Fl((!))
-0 + 20,00, + 0] + my0),
F,(w)
2
—m®y, 2m
2
X(w) = Do)
2 . 2 2 2
X2(0)) = m[{mle(m)(_ o + 2](_,10)0)1 + 0)1 + m2(‘012)} + mlmeIZFI(w)] R
(13.54)
If we express X,(®) = X, etc., (13.53) and (13.54) are written as
1
X = mlmzp(m)[Gllpl +GpF,] (13.55)
1
Xa = oo (@) G2t F1 + GaFal (13.56)
with
® Gy = my(- o+ 2j, 00, + (og + mlmfz)
2
o Gy = my(- 0 + 25,00, + 0] + myoi,)
Equations (13.55) and (13.56) can be written as, [Lyon 75]
X, = H\ \F +H,F, (13.57)

X, = Hy F+HyFy, (13.58)
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1 2 2 2
o H,=—7-0+200,+w0,+m®
1 mlD( jCr 00, + @) +m; ©),)

2
(P

° H12=H21=3

1 2 . 2 2
® Hy = ﬁ(—(’) +2j6,00; + 0] + my07,)

The velocities can be expressed as
X1 = jolH, F\+ HpF)] = Y Fy +YpF, (13.59)
X2 = jo[Hy F)+HyF,] = Yy F|+Y,F,. (13.60)

The average power flow from oscillator 1 to oscillator 2 IT,, is given by
(13.50)

2
. 1 12
m,, = ——2—9%(X2X1)

. 1 “x 1 * *
(1) = SROGX) = 59((H21Y11|F1]2+H12Y12|F2|2). (13.61)

In (13.61) we assume no correlation between F (1) and F,(r), thus
(F\Fp =0.

2
. (0] (012 2 0) (1)12
(xpx1) = ——5 1}| 2| {CZ(OZ}IFII
m2| I 1| |
(020)2
. 12 2 2
(xpx1) = —2{m1C10’1|F2I "m2C2°)2|F1| }
mym,|D|

. WF] * WFZ *
(o) = 2| Ry Yido+ 2] RHpY)d0.

We also assume no crosscorrelation between the two applied forces F,(t)
and F,(¢), hence the cross-power spectral function is

Wr () =0, (13.62)

my|D|
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2
v
2
m,

* .3 2, 2 2
H, Y, = {jo’ +2,0,0" - jo(w0; + myw;,)}.

We obtain for (x,x;)

. 2 2 o 2 2

. Wr [~ —01,n,0,0 We, (7 opn,0,0

(x,x1) = —| ——do+—| ——
2 4T

do. (13.63)
4n —o0 m1|DI2 —o0 m2|D|2

Thus the power flow I1,, becomes

M. = _mlmzm‘;z M0, W, o We (j(n)zd
2= 8n m, m, T
or
4 oo
0. = 2 @ehi®mM® J )’ 4o _r We, (13.64)
12 2n . |D|2 anyom; 4n,w,m,

Using (13.38) we can write
Iy, = Bpl(EN—(EY]
and
Iy, = By [{ED—(ED].
We can easily prove that B,, = B,,.
With
J®B,

Hy(w) = 4 .. 3 R
A0 A0 -A,0 +jA,® +A,

)

2 > 2
-TA;B
J 0_(0)2 do)=_[ Hy(0) do = ————=-
. Ip| . AAL+A2A, — AAA,

The A; coefficients are from (13.52).
e A, =1

* A3 = (MO, +M,0,)

2 2 2
L A2 = {0)1 + 0)2 + 0)12(m1 + m2) + n1n2(010)2}

_ 2 2 2 2
o A = (N0,0; +MN0,07 + 1M ®,0; +N,m,®0,0;,)

2 2 2.2 2 2
(070, + m ®] 0], + Mmy®,m],)

[

>
=Y

]

(13.65)
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If two conservatively coupled oscillators are identical and excited by
independent random forces, the spectrum of power flow between them is
proportional to the difference in the spectra of their energies. For oscillators
that are not identical, the total energy flow will be proportional to the differ-
ence in energies, provided the excitation spectra are relatively flat near the
resonance frequencies [Barnoski 69].

If sdof 2 is blocked, i.e. (E,) = 0, then I1;; = B,,(E,). The coupling
spring k,, is grounded. Analogons to the average damping energy (13.39)

we may express the average energy transferred from sdof 1 to sdof 2 and
sdof 2 blocked as follows

Mi2 = Bp(E,) = N0, (E,). (13.66)

If sdof 1 is blocked, i.e. (E,) = 0, then ﬁzl = B, (Ey) = B,(E,), thus

T = By (Ey) = Ny, (Ey). (13.67)

The average energy I1,, can be expressed as follows

I}, = MMl = N (E}) —Np 0,(Ey) , (13.68)
with
® 1,, the coupling loss factor from sdof 1 to sdof 2 with a blocked sdof
2,(E)) =0
® 1, the coupling loss factor from sdof 2 to sdof 2 with a blocked sdof
I,(E) =0

e o, the circular natural frequency of sdof i

e (E, average total energy of sdof i, with (E;) = m,.()é,»z) , (13.38)

¢ 0,

<E;>
<E2>

=

l_[1, diss HZ, diss

Fig. 13.3. Power flow analogy (courtesy R.G. Dejong, Calvin College, USA)
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From the fact that B,, = B,; we find the reciprocity relation of the coupling
loss factors

Np®; = Ny 0, (13.69)

We can write the power-balance equations of both system 1 and system 2.
The systems are shown in Fig. . For system 1 the power-balance equation
yields

[ i, = N0y (E)) =My 0,(Ey) + 10, (E}), (13.70)

and for system 2 the power-balance equation becomes

N0 (Ep) =My 0,(Ey) = My0,(Ey), (13.71)
or
Ny @((E;) - (Ep)) = M0(Ey). (13.72)
If (13.70) and (13.71) are written in matrix notation we get
Mp+n)e; My o, J{ (Ep) } - { I in } (13.73)
Mo, My + M)y L (Ey 0

From (13.72) and (13.69) the ratio between the energy (E,) and (E,) can
be expressed as follows

(Ey) U
= . 13.74
(E;) My +My) ( )
If we substitute the result of (13.74) into (13.70) we will find
I iy = M (E}) + M0, (Ey) . (13.75)

The average power supplied is equal to the total dissipated energies.

13.4 Multimode Subsystems

We assume two coupled linear multimode elastic structural systems, sub-
system 1 and subsystem 2. Both subsystems are coupled via their common
junction. This is illustrated in Fig. 13.4. The theory described in this section
is based on [Keltie 01].

In a frequency band Aw, each subsystem has a number of active modes

N,(Aw) and N,(Aw). We introduce the term modal density n(w) (number
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of modes per unit of frequency, (modes/rad/s). The number of modes in the
frequency band A® can be written as

N,(A®) = n,(0)Ao and N,(A®) = ny(0)Ao. (13.76)

Junction
Fig. 13.4. Two coupled mdof subsystems

We count the modes in subsystem 1, denoted by o, 1 <o<N, and in the
same manner for subsystem 2, denoted by 6, 1 <o <N,. There are N|N,

interacting modal pairs o and B. This is shown in Fig. 13.5. This modal
pair will be considered as two coupled oscillators.
We will derive the equation for the power flow IT,, between subsystem 1

and subsystem 2 taking into account the following assumptions:

e Each mode of each subsystem has a (circular) natural frequency equally
distributed (probability) in the frequency range Aw (rad/s)

e Every mode in a subsystem has equal energy (E,) or (Eg), hence
(Ey) = Ni(E,) and (E,) = N,(E;)

e Each mode in a subsystem has the same damping n, or 1,

(E) (E,)

Figh13:Suvlllustration'of energy flowlin'multimode systems



13.4 Multimode Subsystems 279

The average intermodal power flow I, between mode oo and mode G, in
the frequency band Aw, is

HOLG = <Bac>(<Ea,Am>_ <E0,Am>)' (1377)

The total power flow IT,; from all modes N, of subsystem 1 in the fre-
quency band Aw to mode o is given by

s = (Boa) Vi ({Eg) = (Eg) . (13.78)

The total power flow II,, between all modes N, of subsystem 1 and all
modes N, of subsystem 2 in the frequency band A® now becomes

M, = (Boo) NiN,((Ey) - (EQ)) - (13.79)
In terms of the total subsystem energies
(E\) = N(E)) and (E;) = N,(Eg) . (13.80)

Equation (13.79) can be rewritten in subsystem total energies in the fre-
quency band Aw using (13.80),

(£)_(£9)

I, = <BM,)N1N2( N, N, (13.81)

We define the coupling loss factor n,,, assuming a blocked subsystem 2, as

0Ny, = (BuxadNs, (13.82)

and the coupling loss factor n,, , assuming subsystem 1 blocked, as

ony = (BaaN; - (13.83)
We can derive the reciprocity relationship from (13.82) and (13.83)
NNy, = Ny N, (13.84)

Equation (13.81) can be rewritten as follows using the definition for the
coupling loss factor

I, = om,(E}) - o, (E,). (13.85)
The dissipated energy per subsystem will be defined, similar to (13.39), as

The power flow between two subsystem is illustrated in Fig. 13.6.
We define the subsystemrmodal density (number of modes per unit of

radial frequency) n; with (13.76)
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_ N 13.87
o= e (13.87)
With use of (13.84) we can prove the reciprocity relation
Nty = Nyyhy - (13.88)
Fig. 13.6. Two interacting subsystems
If we go back to (13.85) and substitute the result of (13.88) we find
n
I, = wn12[<E1>—n—;<E2)] (13.89)
Finally, we obtain the following equation
(Ep) (E
M, = a)nlznll:—l -—9}. (13.90)
ny ny
The dissipated energy IT, 4 of subsystem i is expressed as
I, 4iss = ON(ED, (13.91)

with
e II, 4 the dissipated energy of subsystem i

o the centre frequency in a certain frequency band (octave or one-
third octave)

n; the damping loss factor (DLF)
(E;) total average energy of subsystem i

The power-balance equation of the two subsystems, shown in Fig. 13.6 can
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IT

My + I giss s (13.92)
and

I,

I-121 + HZ, diss - (1393)
Equations (13.92) and (13.93) can be written

(Ep) (Eyp
m, = conlznl[-——-—nl -2 ]+(onl(E1), (13.94)
1 2
and
(Ey) (Ey)
m, = wnZInz[n—z——;l—l—}+0)T]2(E2). (13.95)
2 1
In matrix notation
Ny
Np+tNy, —/———
o { (Ev }= l{ - } (13.96)
Moy (Ey) Ol 11,
", RID)

Applying (13.88) we may write (13.96) as follows
T|12+n1 _n21 { <El> } — l{ nl }, (13.97)
N My +Myf L (EY) ol m,
with

e II, the source power input of subsystem i

e o the centre frequency is a certain frequency band (octave or one-
third octave)

e n; the coupling loss factor (CLF) between subsystem i and subsys-
tem j

Equation (13.97) is not symmetric.

The following set of equations is written in a symmetric form because of

(13.88)
(Ev
Mp+M)ny Nyny ny =l{ I, } (13.98)
“Mipny (Mg +M)ny| | (Ep ol m,

ny
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As a first approximation, a spacecraft structure can be modelled as a flat
aluminium platform that is coupled to a large aluminium cylinder as illus-

trated in Fig. 13.7 [Norton 98]. The density of Al-alloy p = 2700 kg/m3.

The alumininium plate is 5 mm thick and is 3.5x 3 m?. The cylinder is 2 m
long, has a mean diameter of 1.5 m and has a 3 mm wall thickness. The fol-
lowing information is available about the structure in the range 500 Hz
octave band: the platform is directly driven and the cylinder is only driven
via the coupling joints; the internal loss factor of the platform (system 1)

n, = 44x107, the internal loss factor of the cylinder (system 2),

n, = 2.4x10_3; the platform rms vibrational velocity is (v,) = 27.2 mm/s;
and the cylinder rms velocity (v,) = 13.2 mm/s

Input power

Platform i

Cylinder

Fig. 13.7. Simple spacecraft structure

Estimate the coupling loss factors n,, and m,, , and the input power IT, .

Table 13.1. Spacecraft properties

Structural Mass Velocity (rms) Energy
part (kg) (m/s) (Nm/s)
Platform M, = 117.8935 272x10°  (E,) = 8.7222x107
Cylinder M, = 76.3407 132x10°  (E,) = 1.3302x107

The total power put in the spacecraft will be dissipated in the platform and
the cylinder, thus
I, = on,(E)) + on,(E,) = 1.3060 Nm, W.

The power-balance equations for the platform and the cylinder can be writ-

ten as (13.97)
Me+M N2 { (Ep) }= l{ IT, }
Nz My + M| L (£ @l o
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From the second equation it follows that
(_E2_) _ M
(E}) ~ Mg+,

and with the power-balance equation for the platform

= 0.1525,

I1
(M +MCE) =My (Ey) = El»
we obtain for the coupling loss factors m,, = 426x10"  and

Ny = 3.92x107™.

13.5 SEA Parameters

To generate the SEA equations (e.g. (13.97) and (13.98)) a number of
parameters must be calculated:

e Modal density

e Source power input

e Subsystem energy

e Damping loss factor

e Coupling loss factor

The mentioned SEA parameters are discussed in the following sections.

13.5.1 Subsystem Modal Densities

The modal density n(w) is the number of modes per radian frequency. The
modal density n(f) is the number of modes per frequency (Hz). The rela-
tion between n(®) and n(f) is

_ dN(w) _ dN() df _ n(f)
n(w) = =2 = o de = 2% (13.99)

Bending Beam
The circular natural frequency of a simply supported bending beam is

defined as
2
®, = (3’—‘) J@ p=123,.., (13.100)
L m

assuming a mode shape sin(e%v) , with
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e EI the bending stiffness of a bending beam (Nm2)
e m the mass per unit of length (kg/m)
e [  the length of the beam (m)

We may express the number p in @,

_L ,m
p= /mp4 Ta (13.101)
T'he modal density can be easily obtained

—dp _ L1 Im
n(w)= 28 2 e ET (13.102)
The modal density n(®) in (13.102) depends on the square root of fre-

quency. The expression (13.102) can be taken as the general modal density
expression for beams in flexure.

Bending Plate
The circular natural frequency of the rectangular plate, simply supported,
along all edges, and no prestress, is given by

4 2 242
o = "—’3[(@) +(ﬁ)] = Dy (13.103)
m L\a b m?’
ky = O[T, (13.104)
with
3
e D= E—tz the flexural rigidity of the isotropic plate (Nm?%/m)
12(1-v%)

® g,b the length and width of the plate (m)
t the thickness of the plate (m)

e m the mass per unit of area (kg/mz)

® m,n wave number

+ iG]

The number of modes N(k) in a quarter of the circle with radius k, see
Fig. 13.8, is given by
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S1a
>

Q1a

2 2
_Tk’ab _ k'ab
N(k) = T 2 In (13.105)

Fig. 13.8. Modal lattice and constant-frequency contours for supported plate
[Smith 65]

The modal density n(®) can be calculated from

Using the result of (13.104) and (13.105) in the previous (13.106) we find
the following relationship for the modal density of the bending plate

(13.106)

“bﬁ‘i/% 1 |m_ ab
n(w) = o 2«/61/; 41tA/;' (13.107)
We can replace the area ab by A, = ab, thus (13.107) becomes
AT
= -2 M
n(w) D (13.108)

The modal density n(®) in (13.108) is independent of the frequency.

Consider an Al-alloy flat plate with a length ¢=2.5 m and a width 5=2.0
m with a plate thickness of 10 mm. The Al-alloy has the following mechan-
ical properties, Young’s modulus E=70x 10° Pa, the density is 2700 kg/m3
and the Poisson’s ratio v = 0.3. Calculate, in the octave band from 32—
1000 Hz the modal density and the number of modes in the octave fre-
quency bandwidth. The modal density of the plate is constant over the fre-
quency range. For the circular frequencies the modal density becomes
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n(®) = %; % = 2‘54);?'0 2700;0‘01 = = 0.0142 modes/rad/s,
70x10"x0.01
4/ 12(1-0.3%
and in the frequency domain (Hz) the modal density is
n(H= 2nn(®) = 0.0893 modes/Hz.

In Table 13.2 the number of modes per one-octave frequency band is calcu-
lated and shown.

Table 13.2. Mode numbers

Bandwidth
1

grr;-l(l):ri?:;eband A = Efﬁ Modal density Number of modes
f(Hz) (Hz) (modes/Hz) in Af

31.5 22 0.0893 2.0

63 45 0.0893 4.0

125 88 0.0893 7.9

250 177 0.0893 15.8

500 354 0.0893 31.6

1000 707 0.0893 63.1

We showed the derivation of the modal density n(w) for the bending
beam and the bending plate. In Table 13.3 other frequently used modal den-
sities for structures and acoustic cavities will be given.

Table 13.3. Modal densities

Structural subsystem Motion Model density n(®)
Beam Longitudinal L b

“E
Beam Flexure, bending L1 [m

==, n

2n, [oNEI
Membrane Lateral A mé

2w S
Plate Bending, flexure ~

& nz Ao m

P 4mND
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Table 13.3. Modal densities (Continued)

287

Structural subsystem

Motion

Model density n(®)

Sandwich plate [Nigam
94, Chapter 10]

Acoustic chamber

Bending, flexure

A
_P(D(l

ngh
L Amo’ +2¢°B(1 - v} ]

~2 4- =2
Jm 0)4m(1)2g2[3(1 -m)

2

Vo A® P

+ +
2 3 2 2
e 8nPc? 16me

Cylinder Bending, flexure
®
np (ar > 1)
2
w(m) (<)
o, O,
Symbols
e A, surface area
t+t
e d=nh+ (i + 1) (m)
2
. o= _Gﬁx[L N L]
h. LEt; Et,
e h, core height (m)
e m  mass per unit of length (kg/m)
e m  mass per unit of area (kg/mz)

® 1,1, thickness of face sheets (m)

o A
e D

e E E,, E, Youngs

flexural rigidity D =

Ef

modulus (Pa)

* G,G, G, Shear modulus (Pa)

R radius of ylinder (m)
Swrmembranertensionforcerpermunit of length (N/m)

I second moment of area (m4)

12(1-v%

total surface of the acoustic cavity (m2)

(Nm%/m)
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e P the perimeter of the acoustic cavity (m)

e V  volume of the cavity (acoustic chamber) (m3)
e o circular frequency (rad/s)

°* o, = 1 E ring frequency is frequency whose wavelength is
BNp(1-v%

equal to the cylinder circumference [Norton 98]

¢ B= 2 E\Eq,
Et, + E,t,

e p  density of material (kg/m3)
LAY Poisson’s ratio

13.5.2 Source Power Input

Mechanical Random Loads
The average (rms) input power IT;, of an sdof, is expressed in the PSD

function of the random force, (13.41)
_ mno, Wr(f))  Sp(@,)
LY 4m = 2m

If we assume the power spectral density is constant over a frequency band-
width Aw, the mean-square value of the random applied load is

[ siolro)do=

(Fro = Sp(®)A®. (13.109)
Equation (13.41) can now be written as

— SF(mn) _ <F2>Aa)

I 2m  2mA®

m

(13.110)

We have N(w) lightly damped modes in the frequency band Aw, the total
input power using (13.110), [Kenny 02a, 02b],

2
w0 = S0y ) = (s, a3

1 2MA®

with M the total mass. The average input power is given by (13.25) and can
be rewritten as the average input power in the frequency band A®

0, 00 = (F2R{Y (@)} . (13.112)

If we compare (13.111) with (13.112) we find



13.5 SEA Parameters 289

n(®) = 2MR{Y (0)}. (13.113)

The modal density can be averaged (smoothed) over the frequency band
Ao = o, - o, with the centre frequency ® using the following expression

n(w) = Aiwj' IMR{Y (w)}. (13.114)

[Skudryk 68] derived an expression with respect to the frequency average
input power of a bending plate excited by a force F(w)

I IF((D)I L AL (13.115)

8 8JDm

with m is the mass per unit of area.

plate -

13.5.3 Subsystem Energies

Mechanical Systems
The average energy (E) of an sdof system is given by (13.38)

(E) = Wrlh) _ Sp(®,) .
dmmnf, 2mno,
If we assume the power spectral density is constant over a frequency band-
width Aw, the mean-square value of the random applied load is (13.105)
(FHao = Sp(®)Ao.
We have N(w) lightly damped modes in the frequency band Aw, the total
energy (E),, using (13.38) is

(F YAw
2Mno’

(F*) a0

(E)pg = mN(w) = n()r==—

(13.116)

with M the mass of the subsystem. If we define the average energy (E),,
as

(B)po = M{(v))n0, (13.117)
with (+)ae the mean square of the velocity, averaged in place and in the

frequency band Aw . The averaged mean square (v} a0 nOW becomes

(Vs = n(w)<F Jao (13.118)
2M now
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The average acceleration (a*ao can be calculated using

2 o
(a')ao = ~522, (13.119)
®
with
e ® the centre frequency of the bandwidth Aw.
The power spectral density is S,(®w) now becomes
_ (a)ae _ W
So(@) = 5L = =0 (13.120)

Acoustic Systems
The total energy in (E,) for a reverberant acoustic room (chamber) is,

[Beranek 71]

2,
(Ey) = %V, (13.121)

where
o ( p2) the mean-square sound pressure (space-time average) (Pa, N/m)2
SPL
which can be calculated with (p*) = p2:10 '* , with Prs = 2x107
(Pa, N/m?).
2
e SPL sound pressure level, SPL = IOIOg(ppT) (dB)
ref.
e V  volume of acoustic room (m3).
e p  the ambient density of the fluid (air p = 1.2 kg/m3 at room tem-
perature and 1 Bar).
e ¢ the ambient speed of sound in fluid (air ¢ = 340 m/s at room tem-
perature).

Sound Radiation
A vibrating panel with average velocity (v),,, space and time averaged,

surrounded by a fluid, will radiate power. This power radiation I1_,, in the
frequency band Aw, is [Beranek 71]
My = A,PcC,g (V)0 (13.122)

with
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e o, theradiation efficiency

The radiation efficiency depends on the wavelength of bending in the plate
structure and the wave number of the acoustic field. If both wavelengths
(wave numbers) are equal we talk about the critical (coincidence) fre-
quency. For an isotropic plate [Smith 65] the critical frequency is

) =
Jorie= %t er:; (Hz). (13.123)

The wave number k& (wave constant or propagation constant) (1/m) of the
acoustic field is [Smith 65]

k =

ale

(13.124)

The relation of the plate wave number k, to the circular natural frequency
o, of a simply supported isotropic plate is given by (13.104)

m _ @
ky = JouaT = =t = k. (13.125)

Equation (13.125) will result in (13.123). The radiation efficiency o,,,, in
several frequency ranges is given in Table 13.4 [Beranek 71].

Table 13.4. Radiation efficiency

Single-sided® radiation efficiency (ratio)

Frequency region GOrad

Well below coincidence frequency f (Hz)
c
kp<<k,a,b«7\. = },

ka,kb«l,Ap = ab

2 44
C
1‘ Up tOf“b, fllfcrit = ﬁﬁ’ Grad = _cief
p

_ l(‘_‘+’2)
“2\b a

2. Just above fi, G ,,q fluctuates



292 13 Statistical Energy Analysis

Table 13.4. Radiation efficiency (Continued)

Single-sided? radiation efficiency (ratio)

Frequency region Orad
Below coincidence frequency 2 P
(k < k), multimodal region Cprd = Angl(a) + Acmg2(ot)
p P

(kpa, kpb) > 2, corner modes and
edge modes occur when frequency 8 (1- 20(2) fe f_‘C_ﬂl
. C 4 2

> = 2
1ssuchf_.P g, (o) = na’(l—a)
P = 2(a+b)) 0 f>f12—'“
}"crit = <

Sorit (l-az)ln(itg)+2a

1
g(a) = -
a = fcan 4n ,(1—012)3

At the critical frequency

1
rad kcm

Above the critical frequency 1

a. For double-sided radiation the radiation efficiency will be multiplied by a factor
2

b. f}; is the first natural frequency of the panel with the highest volume displace-
ment.

Diffuse (Reverberant) Sound Field Driving a Freely Hung Panel

We will solve the power transfer from a reverberant room to a free-hanging
plate. The SEA parameters are illustrated in Fig. 13.9. System 1 is the
reverberant room and system 2 is the plate. We assume the energy in the
reverberant chamber will be kept constant. The power-balance equation for
the plate can be written as

I,= I, g (13.126)

or

E) (E
(t)’r]unl[(—nfz—%]= o, (E) = 0. (13.127)
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We will now focus on the power transfer from the reverberant room to the
vibrating plate

(E)) @] (13.128)

I (w) = (97]12"1[_”;‘_ n,

The radiated power II, ,, of the plate into the reverberant room is expressed
in (13.128) by

(Ey)
My = (sz"lT;‘ = 0Ny (Ey = ApPCGrad(Vz)Aw , (13.129)

Reverberant
Room

Fig. 13.9. Plate hanging in reverberant room
with (E,) = Mp(vz)m (13.117) we obtain the following expression for the
coupling loss factor n,,

A pCG,ad

Mo (13.130)

Ny =

The power transferred from the acoustic chamber to the plate can be
expressed as omn,(E,;) . With

. (E= (E) = 22
(Ea.r)_ (E1> - pC V

Vo'

¢ room to the plate now becomes
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2, 2,2 2
21°A,6,,4(P)C ',

2
M,®

13.5.4 Damping Loss Factor

[Trudell 80] proposed to apply loss factors, more or less dependent upon
the frequency. The damping value originated from acoustic tests on Saturn
IVB/V interstage panels.

<
_ { 0.01 f<250Hz (13.132)

4.7687f 11640 f>250Hz

For a cavity an equivalent internal loss factor is obtained from an average
acoustic absorption coefficient o using the expression
cA, 0

New = Ty (13.133)

where:
e ¢  speed of sound in air

e A, total wall area of the cavity (mz)
e V  volume of the cavity (m3)

The proportion of incident energy that is reflected into the room is 1-a,
thus

I—[refl -
= = (1-a). (13.134)
l—Iinc
. . . —V(pz) .
Every time a wave strikes a wall, a quantity of sound energy o oc is lost

. .. . . cA
from the reverberant field. Statistically, this reflection occurs 4—‘;” per sec-

ond. i_V is statistically the average length the wave will travel. The number

w

cA
of strikes per second against the wall is 4—‘;V . The rate of energy loss in the
reverberant room is
CAw= 2 2
LagPn (13.135)

4V — pc pc
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From (13.135) we can derive (13.133).

13.5.5 Coupling Loss Factor

In this section the coupling loss factors associated with some of the more
common coupling joints are summarised. For more information one may
want to read [Norton 89, Section 6.6].

Structure-to-Structure Coupling Loss Factors

The most commonly encountered structure-to-structure coupling is a line
junction between two plate structures. The coupling loss factor for a line
junction is given in terms of the wave transmission coefficient t for the line
junction [Norton 98]. The coupling loss factor of a line junction from plate
1 to plate 2 is given by

—, 13.136
WA, | ( )

M2 =
where
e ¢, the bending wave velocity (or phase velocity),
1

1

5{ Ef }4
cp= 0 ———

12(1-v?)

o ¢ thickness of the bending plate

e E  Young’s modulus of the plate material (Pa)
e v  Poisson’ ratio

o L length of the line junction (m)

e ® radian frequency (rad/s)

® A, theareaof plate 1 (m?)

e 1T,, Wwave transmission coefficient

The normal incidence transmission coefficient for two coupled flat plates at
right angles to each other is given by [Norton 98]

1 -2

1
1,,(0) = 2(\v2+\v 2) : (13.137)

where
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3
2
1

N

5
2 E
53
L) dens1ty of the plate material (kg/m3)
1

2
e ¢ longitudinal wave velocity, ¢, = (g) (m/s)

The random incidence transmission coefficient t,, is approximated by
[Norton 98]

4l
2.754—-
)
Ty = T12(0)

1+3.242
)

(13.138)

The coupling loss factor for two homogeneous plates coupled by point con-
nections (e.g. bolts) is approximated by, [Norton 98]

2 2
_ANnep i (patier 1) (Patyer,2)
A/-QE)A,;, {(pitier, 1)2 + (szch,2)2}

(13.139)

with
e N  the number of bolts

Consider two flat Al-alloy plates that are coupled at right angles to each
other. The first plate is 3 mm thick and is 2.5x 1.2 m?, and the second plate
is 5.5mm thick and 2.0x 1.2 m?. Evaluate the coupling loss factors m,, and
M,, in all the octave band frequencies from 125 to 2000 Hz for

1. A welded joint along 1.2 m edge
2. A bolted joint with twelve bolts along the 1.2 m edge
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The results of the coupling loss factor calculations are shown in Table 13.5.

Table 13.5. Coupling loss factors two for plates connected with an angle of 90°

Welded joint Bolted joint

Octave band Npx10° My x100 mp,x100 1, x103
(Hz)

125 3.15 5.77 14.4 26.4
250 223 4.09 7.19 13.2
500 1.58 2.90 3.60 6.60
1000 1.12 2.05 1.80 3.30
2000 0.789 1.45 0.899 1.65

For a cross-sectional change the transmission coefficient t,, becomes
[Francesconi 96]

s 03 3 5 )

4 2 4 4
y +ty +y +y
1 1

T, = , (13.140)

! 24 _§+1+ i+l 2
SV +V¥ v +5v

with

_h
[ ] \V = t2
Acoustic Radiation

The coupling loss factor for a structure—acoustic volume coupling (see
(13.130)) is given by

A pco
= 2pPCOmg (13.141)

il
s M,0
Using the reciprocity relation of coupling loss factors, (13.88), we obtain
the following expression for the coupling factor from the acoustic space to
the structure
Aepccrad ns
Mas = -, (13.142)
as M, 0 n,
where
e n, the modal density of the structure
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e n, the modal density of the acoustic space

13.6 Stresses and Strains

The strain energy U per unit of volume in a elastic body in the principal
stress directions is given by

*

U = %[01£1+02£2+c3£3]. (13.143)

For plate and shell structures we have 2-D stress states (plane stress) and
we assume o5 = 0, hence the strain energy per unit. volume becomes

*

U = %[(5181 +0,8,]. (13.144)
In the worst case situation the total strain energy is a line strain state, so

U' = Jloel. (13.145)
For isotropic materials, with Young’s modulus E (Pa) the strain energy per

unit of volume is expressed in stresses

* | )
U = 5zl67]. (13.146)

In pure bending the stress can be expressed as (see Fig. 13.10)

max

o(z) = 272 . (13.147)

Plate, beam

Fig. 13.10. Bending stress in plate and beam, in one direction

The strain energy per unit of area now becomes
1 1 1

jzt Uz = AP o = 20 rt d 13.148

N Z= 5% -1:6 () Z_Et20max 7 d7 = =222, (13.148)
2 2 2
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The average strain energy per unit of area is equal to the average kinetic
energy per unit of area of a plate, thus

t<6max> 1M

22r
6E - 24, (. (13.149)
For (omax) we find the following expression
3EM
(Omar) = f(v) (13.150)

For a sandwich plate with a face sheet thickness ¢, (13.148) becomes

J'_é: (UYdz = fﬁ(—(;i”—“i) = %ﬁi’(ﬂ). (13.151)
For (csmax) we now obtain the following relation
(Omas) = 2t,A,,<v> (13.152)
13.7 Problems
13.7.1 Problem 1

A spring-mounted rigid body with a 100 kg mass can be modelled as an
oscillator with a spring stiffness k=6.25x 10°N/m. A steady-state applied
force of 75 N produces a velocity of 0.15 (m/s)]. Estimate the damping ratio
, the loss factor n and the amplification factor Q (quality factor).
Answers: { = 0.0125, n = 0.025 and Q = 40.

13.7.2 Problem 2

Consider two coupled groups of oscillators with similar modal densities, in
which only the first group is directly driven in the steady state. Using the
steady-state power-balance equations, show that

(E2> M1

(E) ~ my+ny’
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Now, assuming that the oscillators are strongly coupled, the first group is
lightly damped, the second is heavily damped, and that one wishes to mini-
mise the vibrational levels transmitted to the second group, what should one
do [Norton 89]? Hint: use (13.75).

13.7.3 Problem 3
Show that
n
I, iy ”‘1712’r|21

: S
o(E) Pny 4y
for two coupled groups of oscillators in steady-state vibration.

13.7.4 Problem 4

Consider two coupled oscillators (sdofs) where only one is directly driven
by external forces and the other is driven only through coupling. Derive
expressions for the total vibrational energies (E,) and (E,) of each of the

oscillators in terms of the input power IT, ,, , the loss factors n; and n,, the
coupling loss factors n,,, n,, and the natural frequencies o, and o, of the

oscillators.
Discuss the following situations:

L. My »ny and ny; » M,
2. My «my and My, «My
3. mp«my «my
4. My «my «m,

Answers.
1121) Ny
1+—= -
( N, (Eyp _ N,

1,in

(E) _

1,in

b

mml(l +Tﬁ)+m2n2 mml(l +1l2—1)+o)2n2
Up) Up)

13.7.5 Problem 5

Evaluate (1) the modal density and (2) the number of modes in each of the
octave bands from 125 to 4000Hz for a 5-m long Al-alloy I of-shaped bar
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with flanges 75 mm width and a web plate with a height of 200mm and a
constant thickness of 3 mm. (E-Al-alloy=70x 10° Pa, p Alalloy = 2700 kg/

m3) for (1) longitudinal, and (2) flexural (bending) vibrations.

13.7.6 Problem 6

The Large European Acoustic Facility (LEAF) has a chamber volume
V = 1624 m>. The chamber dimensions are 9 x 11 x 16.4 (width x length
x height) m?>. Calculate the modal density of the LEAF in the one-octave

frequency band from 31.5-8000Hz.

13.7.7 Problem 7

The Large European Acoustic Facility (LEAF) has a chamber volume
V = 1624 m’. Calculate the average energy (E gapy Of the LEAF in the
one-octave band and SPL values as shown in Table 13.6.

Table 13.6. SPL LEAF

SPL (dB),
8;1:)-octave frequency band g = 2x1 0_5 Pa
31.5 136
63 141
125 147
250 150
500 147
1000 144
2000 137
4000 131
8000 125

The speed of sound in air c=340m/s and the density of air p =1.2kg/m3.
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13.7.8 Problem 8

A panel is placed in a reverberant room with an average pressure (p2).

Show that the average acceleration <a2> of that panel can be expressed as

(a ) 21'5 ¢ Mrad

(py  MpPp Tlrad+n,,’

where

e n, modal density of a panel

e M total mass of the panel

e ¢ speed of sound in air

e p  density of air

® 1, coupling loss factor for radiation
e mn, theloss factor in the panel

The modal density of the room is only based on the volume participation
[Lyon 64].




14 Free-free Dynamic Systems,
Inertia Relief

14.1 Introduction

Free-free systems can move as a rigid body through space, the structure is
so-called unconstrained. The stiffness matrix [K] is singular and therefore
the flexibility matrix [G] = [K]™' does not exist. Launch vehicles, aircraft
and spacecraft are examples of free-free moving dynamic systems. In this
chapter, a method, the inertia relief, will be derived to analyse free-free sys-
tems. The motion as a rigid body will be eliminated and a new set of
applied loads (relative forces) will be used to analyse the elastic behaviour
of the free-free system. In the following sections the relative motion, rela-
tive forces will be introduced and a definition of the inertia-relief flexibility

matrix [G,] will be given.

14.2 Relative Motion

For a free-free moving dynamic system the total displacement vector {x}
may be expressed in a pure rigid motion displacement vector {x,} and a

relative elastic displacement vector {x,}, thus

{x} = {x}+{x.}. (14.1)

The modes of the free-free dynamic system will be divided in the 6 rigid-
body modes [®,] and the elastic modes [®,] . The displacement vector {x}
will be projected on an independent set of modes

{x} = [®{n}, (14.2)
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with
e [®] the modal matrix
e {n} the generalised coordinates

or
{x} = {x}+{x.} = [D{n,} + [P {n.}, (14.3)
with
e {n,} the generalised coordinates with respect to the motions as a rigid
body

e {n.} the generalised coordinates with respect to the elastic behaviour of
the dynamic system

The undamped equation of motion of a dynamic system loaded with the

dynamic force {F} is

MI{x} +[K]{x} = {F}. (14.4)
With the introduction of (14.3) into (14.4) and knowing that [K][®,] = [0]

we obtain

[MI[®,1{N:} + [M1[®]{Ne} + [KI[®]{n.} = {F}. (14.5)

14.3 Relative Forces

The uncoupled equations of motion of the dynamic system, exposed to the
force vector {F}, and expressed in the generalised coordinates {n} can be
written

1. For the generalised coordinates associated with the motions as a rigid

body with in general 6 zero natural frequencies (mi2 =0,i=12..,6)

Mii = {0, ;) {F}. (14.6)

2. For the elastic generalised coordinates associated with the elastic defor-
mations

Ne,i+ @2 Mei = {0} {FY,i = 7,8, ... (14.7)

The rigid-body modes [®,] are orthonormal with respect to the mass
matrix [M]
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(@1 M1[®,] = []]. (14.8)
Similarly, the elastic modes [®,] are orthonormal with respect to the mass
matrix [M]

(@1 M1[®,] = (1. (14.9)

The external forces are in balance with the inertia forces of the rigid body
and the internal elastic forces. If we subtract the inertia forces from the
external forces the elastic forces are in equilibrium and will not excite the

rigid-body motions. We will define the virtual rigid-body forces {F,} that

are in equilibrium with the inertia loads [M1{x;} in such a way that [Craig
77]

{F.}+[M}{x;} = {0}. (14.10)

The acceleration as a rigid body {x,} will be projected onto the rigid-body
modes {x;} = [®]{n}. The virtual forces {F,} can be expressed in the
generalised coordinates [1,]

{F.} = -[Ml{x;} = -[M][®]{n:}. (14.11)

The generalised accelerations [1,] are related to the external forces by sub-
stituting (14.6) into (14.11)

{F.} = -IM[®,][®,){F}. (14.12)
From (14.5) and (14.11) we can derive that
MI[®,1{Ne} + [KI[D@I{N} = {F}-[MI[@]{n:} = {F}+{F,} = {F.}.(14.13)
The relative elastic forces {F,} are defined as
{F.} = {F}+{F.} = [Al{F}, (14.14)
with
[A] = [1]-[M][®][®,]". (14.15)

The matrix [A] is called the inertia-relief projection matrix [Craig 00] or
the filtering operator [Thonon 98]. With (14.8) it can be easily proved
[Preumont 97] that

[@17[A] = 0, (14.16)
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and with [<I>,]T[M][d>e] we get

[@,17[A] = [®,]". (14.17)

From (14.16) we learn that the load vector [A]{F} is in equilibrium with
respect to the point on which the rigid-body vectors are defined. The elastic
motion {x,} can be solved with (14.13)

(@1 IMI[@I{Me} + (@) [KI[®]{n} = [®I[AI{F},  (14.18)
thus

(DM} + (0N} = [®]{F} (14.19)

The static solution of the relative or elastic motions {x.} = [®.]{n.}
becomes (see (14.17) and (14.18))

(x} = [@](®1KI®,])  ((@,17{F}) = [®.](0, 3@ {F}. (14.20)

An unconstrained dynamic system consists of three mass—spring
dynamic systems with the following mass matrix [M] and stiffness matrix
[K]. The system is loaded with an external force vector {F}

100 1 -10 1
Ml ={010,[Kl=|-1 2 -1,{F} =4 0
001 0 -11 0

Suppose the first dof (x,) has a prescribed unit displacement x, = 1.
The displacement vector

N RN

The vector
X1 1
< x2 = 1
[ X3 1
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The rigid-body mode {¢,} is defined as {q)r}T[M]{q)r} = 1, thus

1

1
{9,} =311
1
because
1
[11 MK 1 =3,
1

The matrix [A] can now be calculated

2 —-1-1
(4] = (- M@ = 5|1 2 1.
-1-12

The components of the vector of relative elastic forces become

1 2
{F.} = [A{F} = 3] -1
-1
We denote that the components of the relative elastic force {F,} are in
equilibrium, because {¢ }[A]{F} = {0}.

14.4 Flexibility Matrix

The relative elastic forces {F,} are in equilibrium because the inertia

forces {F,} were subtracted from the external forces {F}. Hence we may

constrain the free-free structure, to eliminate the motions as a rigid body, in
any arbitrarily selected point A (maximum 6 dofs) as illustrated in
Fig. 14.1.

We want to calculate the elastic displacement {x,,} of the constrained
structure, due to the relative elastic force {F,}, with respect to point A. The
displacements {x,,} are

{xea} = [GJI{F.}, (14.21)

o [Ggluthe flexibility, matrix,with,respect to the degrees of freedom of
point A, the columns and rows corresponding to the dofs of point
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A are filled with zeros, [G,] = [G“ } . The displacements and
00

rotations of point A are zero {x,} = 0.

Fig. 14.1. Constrained free-free structure loaded with relative forces {F,}

If the stiffness matrix [K] is partitioned in an e-set and a c-set (maximum 6
dofs in point A) we get

[K] = [Kee K“]. (14.22)
Kce KCC

The stiffness matrix [K,.] is, in general, regular and [G,] = [Ke,,]_1 .

The flexibility matrix [G,] is

[G,] = [[Kee]—l 0} (14.23)
0 0

The real relative elastic deformation {x_.}is a summation of the relative
elastic deformation and fractions of rigid-body motions [®,]{¥,} . Thus the

relative elastic deformation {x,} is

{xe} = {xeat + [P 1{0}, (14.24)

e {¥,} generalised coordinates
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We will remove the fraction of rigid-body motion and force the displace-
ment vector {x.} to be mass orthogonal with the rigid-body modes [®,],

thus
{x.} [MI[®,] = [0]. (14.25)
This means that the vector of generalised coordinates {9,} is equal to
{0} = ~[®,1"[M]{x,,}. (14.26)
The relative elastic deformation {x,} finally becomes

{xc} = (1= (@D IMD{x2} = [A]{x.a} - (14.27)

The relative displacement {x,,} can be expressed in relative forces by sub-
stituting (14.21) into (14.27), thus

{x.} = [Al'{x.2} = [AV[G{F.}. (14.28)

Finally using (14.14) we can express the relative displacement vector {x,}
in the external forces

{x.} = [A]'[G,){F.} = [A]"[G,][A){F} = [G]{F}. (14.29)

The matrix [Gy] is called the inertia-relief flexibility matrix and will be
used later in the component mode synthesis (CMS) method.

An unconstrained system consists of three mass—spring dynamic systems
with the following mass matrix [M] and stiffness matrix [K]. The system
is loaded by an external force vector {F}

100 1 -10 1
Ml =1o10,[Kl=|-1 2 -1, {F} =4 0
001 0 -11 0

If we constrain x, the stiffness matrix (K] is
(K] = {2 -1

-1 1]
The flexibility matrix [G,.] is

:
(Gl = [K" = |! ‘] ,

and the total flexibility matrix [G,] is
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000
[Ge]-{o 0J= 011f-

~ loa,
012
The rigid-body mode [®,] and [A] are

1 1 1 2 -1-1
{03 =37 1 v [4] = - (M@ = 3|1 2 —1]-
1 -1-12

The final flexibility matrix [G,] becomes

. 0.5556 -0.1111 -0.4444
[G¢] = [AT [G.I[A] = |-0.1111 02222 -0.1111]-
-0.4444 -0.1111 0.5556

The relative elastic deformation {x,} will be

0.5556 -0.1111 -0.4444|]| 1 0.5556
{xe} = [Ge{F} = |-0.1111 0.2222 -0.1111]y 0 [ = |-0.1111] -
-0.4444 -0.1111 0.5556|| O -0.4444

14.5 Problems

14.5.1 Problem 1

A dynamic system consists of 5 dofs; x, ...xs. The mass and the stiffness
matrix and the external force vector { F} are given as

10000 1-100 0 1
01000 12-100 0
Ml =1o0100[KlI=|0-12-10{Ft=q0¢
00010 0 0-12-1 0
0000 1] looo-11 0

Questions:
1. Calculate the rigid-body motion {¢,} with respect to the fifth dof x

2. Normalise {¢,} such that {¢,}T[M]{¢,} =1
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3.
4.
5.
6.
7.
8.

Calculate the matrix [A]
Calculate the relative forces {F,}

Check the equilibrium of the components of {F,}
Calculate the flexibility matrix [G,.] with respect to the fifth dof x,
Calculate [G,]

Calculate the relative displacement vector {x,}




15 Mode Acceleration Method

15.1 Introduction

The mode acceleration method (MAM) will improve the accuracy of the
responses; displacements and derivatives thereof such as element forces,
stresses, etc., with respect to the mode displacement method (MDM) when
a reduced set of mode shapes is used [Thomson 98, McGowan 93, Craig
68,77]. The MDM is often called the mode superposition method. The
MDM may only be used for linear dynamics systems. The MAM takes the
truncated modes ‘Statically” into account.

Using the MAM, less modes may be taken into account compared to the
MDM.

15.2 Decomposition of Flexibility and Mass Matrix

15.2.1 Decomposition of the Flexibility Matrix

The undamped equations of motion of a multi-degrees of freedom linear
dynamic system is written as

[M1{x}+[K]{x} = {F}, (15.1)
with
e [M] the mass matrix
[K] the stiffness matrix
{x} the physical degrees of freedom
{F} the load vector of external forces
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The eigenvalue problem becomes
([K1-N[MD{e;} = {0}, (15.2)
with
e ), the j-th eigenvalue of the eigenvalue problem
e {¢;} the j-th eigenvector (mode shape) of the eigenvalue problem

In general the eigenvectors are normalised with respect to the mass
matrix [M] in such a way that (orthogonality relations)

{0 MG} | _ ] 8

, (15.3)
{01 IK1{9;} Aid,;

with §;; the Kronecker delta function.

With the general modal matrix [®] = [0}, ¢,, ¢3, ....,0,] the orthogonality
relations of the modal matrix are conform (15.3):

T
(@] [M][@] ={ n (15.4)
(@] [K][®] )

with [1] is the square unit matrix.
Assuming the stiffness matrix [K] is not singular, we can easily derive
from (15.2) that:

(WK1 MD[®] = {0}. (15.5)
Multiplying (15.5) from the left side by [®@]"[K] and from the right side by
[M][(I)]T (15.5) can be written as
[@1'[K1(N [@IMI[@] (@1 M[IMI[®]" = {0}.  (156)
After some manipulations we get
MW@' KI-MI[@]" = {0}. (15.7)
Premultiplying (15.7) by the modal matrix [®] we get

(@A) [®][K]-[®@][M][®]" = {0}. (15.8)

This is equal to
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[®1(A) " [®1'[K] = [1]. (15.9)
The inverse of the nonsingular stiffness matrix is called the flexibility
matrix [G] = [K]™ and therefore

[G] = [@1(W)'[@]". (15.10)

A linear undamped dynamic system is described by the following equa-
tion of motion

100|| x 15 -5 —10{| *i 2
020 %, (*|-5 10 =53 x, =170
003[| ; -10 -5 25]| x, 0

The stiffness matrix [K] and the flexibility matrix[G] are

15 =5 -10 1 0.1800 0.1000 0.1000
[K] = | -5 10 -5| and [K]" = [G] = [0.1400 0.2200 0.1000| -
10 -5 25 0.1000 0.1000 0.1000

The diagonal matrix of the system eigenvalues (A) and the unit normalised

associated eigenvectors or mode shapes [®], with (D1 [M][®] = [I], are
calculated as

13397 0 0 0.4206 0.2402 0.8749
M= 0 83333 0 |[|,[®]=105067-0.4804 -0.1117|
0 0 18.6603 0.3212 0.4003 —-0.2644

Finally the flexibility matrix [G] = [®] (7»)"[<D]T becomes:

0.1800 0.1000 0.1000
[G] = 0.1400 0.2200 0.1000| -
0.1000 0.1000 0.1000

15.2.2 Decomposition of the Mass Matrix

The modal matrix [®] is normalised with respect to the mass matrix such
that (15.4):

(@1 [MI[@] = [1].
Premultiplying the previous equation with the modal matrix [®] and post-

multiplying the previous equation with [M 1[@]" the result will be:
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(@[] MI[@][M][®] = [@I[M][®]". (15.11)

Using the orthogonality relations of the modal matrix with respect to the
mass matrix we obtain:

[@][®]"[M] = [1]. (15.12)

Thus finally the inverse of the mass matrix can be calculated as:

M = [@][@]". (15.13)

The mass matrix is:
100
M]=1020|,
003

0.4206 0.2402 0.8749
The unit normalised modal matrix is: [®] = |0.5067 -0.4804 —0.1117|-

0.3212 0.4003 -0.2644

100
The reconstructed mass matrix becomes: [M] = ( [(I)][(IJ]T)A1 = (020 -

003

15.2.3 Convergence Properties of Reconstructed Matrices

The number of eigenvalues m of a multi-degrees of freedom linear
dynamic system, consisting of n degrees of freedom is, in general, much
less than the number of degrees of freedom, hence m «n.

The modal matrix [®] can be partitioned in the kept modes and the
deleted modes:

[@] = [®, D,]. (15.14)
Reconstructing the flexibility matrix [G] gives
[G] = [@J(A) ' [@) +[®A) (@] = [GI+[G,], (1515

with
e [G,] the residual flexibility matrix
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and reconstructing the inverse of the mass matrix using only the ‘kept*
modes will give

M = [@][®,]. (15.16)

In reconstructing the flexibility matrix the eigenvalues can be found in the
denominator. These eigenvalues will increase in ascending order and the
influence on the participation in the flexibility matrix will decrease rapidly.

The diagonal matrix of the system eigenvalues (A) and the unit normal-

ised associated eigenvectors or mode shapes [®] are calculated as

13397 0 0 0.4206 0.2402 0.8749
M=1| 0 83333 0 |.[®P]=]05067-0.4804 -0.1117|-
0 0 18.6603 0.3212 0.4003 —0.2644

The convergence of the inverse of the mass and stiffness matrices will be
shown when one and two eigenvectors are taken into account. The measure
of convergence is 100% if the measure of error

lssml 118Gl _ |G

= ] T al el

(15.17)

with:
Al the norm of the matrix [A]. The norm of the matrix is defined as the

largest singular value of the matrix [A], [Strang 88]. The singular value
(SVD) is closely associated with the eigenvalue-eigenvector factorisation
of a symmetric matrix. The delta matrices are defined by

° [SM_I] The difference between [M]_1 - [<I>k][(1>k]T
e [8G] The difference between [G] - [@,1{1,) ' [®,]"

Table 15.1. Convergence properties

Number of €y = M% £ = 136Gl b
ascending modes "M 1" ¢ Gl
k=1 90.3 15.5
k=1&2 84.8 11.2
k=1&2&3 0.0 0.0

The convergence errors are illustrated in Table 15.1. One sees the rapid
convergence of the flexibility matrix.
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15.3 Mode Acceleration Method

The basis of the MAM are the damped matrix equations of motion:

[M1{x} + [CH{x}+[K{x} = {F(1)}, (15.18)
with
e [C] the damping matrix
o [x} the physical degrees of freedom; displacements, velocities and
acceleration

e {F(#)} the applied dynamic loads

The MAM is, in fact, rearranging the matrix equations of motion of (15.18)
in the following manner
{x} = [KT'({F(0)} - IM{z}-[C1{x}). (15.19)

Applying the MDM in linear dynamic systems the physical degrees of free-
dom {x} are depicted on the modal matrix [®]

{x} = [®{n}, (15.20)
with
e {m} the vector of generalised coordinates

In real life the displacement vector {x} will be depicted on a reduced set
of ‘kept“modes [®,]and the ‘deleted” modes [P, jare not considered.

The displacement vector {x} will be approximated by

Mk

P

{x} = [<I>k<I>d]{ }z[CDk]{nk}. (15.21)

With the aid of the orthogonality relations (15.4) of the normal modes the
mass and stiffness matrices can be made diagonal. Assuming the same for
the damping matrix [C], we get

[@,][CI[@,] = (2E0), (15.22)

and with A; = (oj2 the coupled equation of motions can be expressed in
uncoupled equations of motion for the generalised coordinates

M+ 2Emn +om = {9} {F(n}. (15.23)

We can now write
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M = {0} {F(}-280m-om. (15.24)
Equation (15.19) can be written
{x} = [KI"{F()} - [K]" [MI[@{N}-[KT'[ClI®@]{n}.  (15.25)
From (15.5) it follows that
(K] IMI[@,] = (A '[®,], (15.26)
and (15.10) and (15.22) yield

[K17'[CII®@,] = [®](\) " (2,0,) . (15.27)
after substituting, (15.26) and (15.27) into (15.25) it becomes
(x} = (G- [@ ] (A [® I N{F(D)} + [®]{n,}. (15.28)
Finally, we obtain the MAM equation
{x} = [GHF()} +[®1{n}. (15.29)

The displacement vector {x} consists of the MDM plus a static contribution
of all ‘deleted ‘modes [®,} Quite often (15.29) is written as
{x} = [\PMAM] + [‘Dk]{nk} , (15.30)
with
e [G,] the residual flexibility matrix
e [yyaml = [G,J{F(r)} the ‘tesidual flexibility attachment modes”, in
fact, the MAM correction on the MDM

In [Chung 98] an efficient manner to create the residual attachment modes
is suggested. Using [Chung 98] the displacement vector {x} becomes

{x} = [\AVMAM}{F(t)}+[¢k]{ﬂk}, (15.31)
with

[¥mam] = [G,I[T], (15.32)
and with
e [Wmam] the ‘Chung” residual flexibility attachment modes.

o [T] the square load-distribution matrix, with unit loads in the col-
umns-at-locations;where the loads {F(7)} are applied.
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To generate the residual attachment modes the following procedure can be
followed:

1. Solve the linear system [G] = (K171
2. Generate the flexibility matrix [G,] = [®,](A,) ' [®,]" with
(@1 [MI[®,] = (1]
3. Generate the residual flexibility matrix [G,] = [G]—[(Dk](lk)_l[cbk]T

4. Generate the load distribution matrix [7]

5. Finally generate the "Chung" attachment modes [¥mam] = [G,1[T]

A linear undamped dynamic system is described by the following matrix
equation of motion

100|| x 15 =5 —10{| * 2
0203 %, (*|-5 10 =5|{ x, (=10
003]| ; ~10 -5 25]| x, 0

The load vector and the load-distribution matrix are

2 100
{F} =40 ¢and[T] = |00 0|-
0 000

The first eigenvalue A, and the unit normalised associated first eigenvector
or mode shapes {¢,} are calculated as

0.4206
A, = 1.3397, {&,} = { 0.5067
0.3212

The residual-flexibility matrix
{¢1}{¢1}T 0.0479 -0.0191 -0.0009
[G,] = [G]_T = |-0.0191 0.0284 -0.0215|-
—-0.0009 -0.0215 0.0230

The residual-flexibility attachment modes; classical and according to
[Chung 98] become
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0.0959 . 0.0479 0 0
{¥mam?} = § —0.0382  and {¥mam} = [-0.0191 0 0| -
~0.0017 ~0.0009 0 0

The following example illustrates the influence of the MAM. The tran-
sient responses of the dynamic system, consisting of three degrees of free-
dom, when the first degree of freedom is exposed to a constant force, will
be calculated:

1. The complete system, i.e. all three modes included
2. The first mode only
3. The first mode only with MAM correction

The transient responses are calculated numerically with the aid of the
Wilson- 6 method [D’Souza 84], with 6 = 1.4, The initial displacements
and velocities at ¢+ = 0 are zero.

The undamped equations of motion of the 3 mass—spring system are

100|| xi 1 -1 0| x 1
010 % (t]-12-1{x =90¢
001]| ; 0 -1 2| x 0

or
[MI{x} +[KI{x} = {F(}.
1
The force vector {F(t)} = 0 when t<0 and {F(t)} = { o ¢ Wwhen t>0.
0
The damping matrix [C] will be introduced as modal damping after the
equations of motion are uncoupled using the orthogonality relations of the
modes, [@,]'[C][®;] = (2E;0).
The diagonal matrix of the system eigenvalues (A) and the unit normal-
ised associated eigenvectors or mode shapes [®] are calculated as

0.1981 0 0 0.7370 —0.5910 0.3280
M=1 0 1550 o0 |,[®]=105910 0.3280 —0.7370| -
0 0 3.2470 0.3280 0.4003 0.5910
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The Wilson-6 procedure is used with {x} = [®]{n}, the generalised
mass matrix [mg] = [(I)]T[M][d)] = [I], the generalised stiffness matrix
[kg] = [@[KI[@] = (&) = (@', {fg} = [®]"{F(1)} and the diagonal
modal damping matrix [cg] = 2&(w,) . The following activities will be
done:

e Solve the acceleration {x(0)} = [®][mg] ' [®]"{F(0)}. The initial val-
ues for the generalised coordinates can be calculated with

{n(0)} = ([‘D]T[CD])_I[@]T{X(O)}-

o Set up the effective stiffness with a time step Az. With a constant At the

6 3
ezAtz[mg] + oarlcsl + ksl

effective stiffness is constant, [k] =
e Set up the effective force vector

{(+0A0) = {f3(1+ 080} + (5 Slme] + leal Jin)

+ (eim[mg] + 2[cg]){r'|(t)} + (2[mg] + eTAt[cg]){ﬁ(t)} .

e Solve [k]{n(t+0AnN} = {f(t+0A1)}.
e (alculate the acceleration, velocities and displacements for the general-
ised coordinates

6
0’ A
[+ AN} = (RO} + 3@+ A0} + (0D

2
@+ A0} = (MO} +AAM )+ S ({fi+ A0} +2{H(0]).

e Calculate the physical displacement, etc.
{x} = [Yyapl + [P I{n,} or {x} = [Wmam{F()} + [® {n,},
{x} = [®J{n«} and {x} = [®]{nc}.

i+ A0} = <S5+ 0a0} - () - (AW} + (1-3 o)
0°At

The simulation time is 200 s with a time increment At = 0.05s and the
modal damping ratio for all modes is § = 0.05.

Solution question 1; all 3 modes taken into account.
When the vibrations are damped out the displacements will converge to the
static displacements
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X 1 3
x, (= [GHF}Y = 31 2
X3 1

The plots of the displacements {x} are given in Fig. 15.1.

Solution question 2; one mode taken into account (no MAM).
When the vibrations are damped out the displacements do not converge to
the static displacements
X1 1
x, ¢ = [G{F}=# 3

X3

—_— N W

The plots of the displacements {x} are given in Fig. 15.2.

MDM 3 modes

Fig. 15.1. Displacements, MDM, 3 modes

Solution question 3; one mode taken into account and MAM.
When the vibration is damped out the displacements converge to the static
displacements

X1 1 3
x, { = [GHF} = 31 2
X3 1

e given in Fig. 15.3.
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MOM 1 mode

Fig. 15.2. Displacements, MDM, 1 mode

MDM 1 mode + MAM

Fig. 15.3. Displacements, MDM, 1 mode + MAM
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15.4 Problems

15.4.1 Problem 1

The complete set of modes is given by the modal matrix [®] . The modes or
vibration modes are orthogonal with respect to the mass matrix [M], such

that [CI)]T[M][(I)] = [I]. Prove that [M][<I>][(D]T = [I].

The 6 motions as a rigid-body of a linear elastic body with respect to a point
A, redundant constrained, are denoted by [®,]. The elastic modes with

respect to point A are denoted with [®,]. The matrix of the modal partici-
pation factor is given by {L,-j}T = {q),’,-}T[M]{cbe,j} ,i=1,..,6 and j=1,2,....m.
The modal effective mass is given by [M,; ;] = {L,.j}T{L,.j} . Prove that

Z[Mefﬁ 1= [@,1"[M][®,] = [M,], the mass matrix as a rigid body with

J
respect to point A, if all modes are taken into account.

15.4.2 Problem 2

A linear dynamic system consists of three degrees of freedom and has the
following characteristics [Lutes 96]:

100
e The mass matrix is given by [M] = m|g 1 ¢ -
001
321
¢ The modal matrix is given by: [®] = [$,,0,,0;]1 = |5 o 3|, with
6 -1 2

[@1'TM][@] % [1].
e The natural frequencies of the dynamic system are

[@,,0,,0,] = [JEZJE3«/E:I with m (mass) and k (stiffness) as sca-
m m m

lar values.
e The modal viscous damping is | §,,8,,€; | = 10.05,0.05,0.05 .

Reconstruct the following matrices:
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o The stiffness matrix [K]
¢ The damping matrix [C]
e Sketch the three mass—damper—spring system

15.4.3 Problem 3

A linear dynamic system consists of three degrees of freedom and has the
following characteristics [Lutes 96]:

100
¢ The mass matrix is given by [M] = m|¢g 1 0] -
001
29 2
e The modal matrix is given by: [®] = [¢,,0,.0;] = |5 0 -17/|, With
9-2 9

(@1 [M][®@]#[1].
e The natural frequencies of the dynamic system are

[,,0,,0;] = [ A/’é J% A/S—Zf} with m (mass) and & (stiffness) as sca-

lar values.
¢ The modal viscous damping is | §,,&,,€; | = [0.01,0.01,0.02 |.

Reconstruct the following matrices:

e The stiffness matrix [K]

e The damping matrix [C]

e Sketch the three mass—damper—spring system

15.4.4 Problem 4

A rigid bar has a length L and a second moment of intertia /,. The bar is

hinged at A and in the middle supported by a spring with spring stiffness
ky. At B a mass spring system is connected to the bar with mass M and a

spring stiffness k,. The system is illustrated in Fig. 15.4.

e Set up the equations of motion using the degrees of freedom ¢ and u.

e (alculate the natural frequencies, generalised masses and stiffness and
the undamped modes with: I,=3 kgm?, L=8 m, k;=300 N/m and k,=200
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N/m and M=2 kg. Normalise the modal matrix [®] such that
[@]"[M][®] = [1].

e Calculate €,, and ¢ (see Table 15.1) with
ethe first mode {¢,}

ethe complete modal matrix [®].
e Reconstruct [M] and [K] with a complete modal base [®] .

<
-

Fig. 15.4. Dynamic system

15.4.5 Problem 5

Calculate the transient responses of the dynamic system, consisting of three
degrees of freedom, when the first degree of freedom is exposed to a con-
stant force

1. The complete system, i.e. all three modes included
2. The first mode only
3. The first mode only with MAM correction

The MDM must be applied.

The transient responses must be calculated numerically with the aid of the
‘Park stiff stable” method [D’Souza 84, Park 75]. The initial displacements

and velocities at ¢+ = 0 are zero.

The undamped equations of motion of the 3 mass—spring system are

100/ x 10 =10 0 || * 10
010/ 5, (t]-10 20 -10]3 x, =1 0
20] | x, 0
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or
[M1{x} + [K]{x} = {F(1)}.
1
The force vector {F(t)} = 0 when t<0 and {F(t)} ={ o ¢ when ¢>0.
0

The damping matrix [C] will be introduced as modal damping after the
equations of motion are uncoupled using the orthogonality relations of the

modes, [®,])[C][®,] = (2,0

Use the Park procedure below with {x} = [®]{n}, the generalised mass
matrix [mg] = [CIJ]T[M][d)] = [I], the generalised stiffness matrix
[kg] = [@1[KI[®@] = (A = (@9, {fg} = [®]"{F(1)} and the diagonal
modal damping matrix [cg] = 2£(®,). The follwing steps will be fol-
lowed:

e Solve the acceleration {x(0)} = [®][mg] ' [®]"{F(0)}. The initial val-
ues for the generalised coordinates can be calculated with

MO} = (@17 [®]) ' [®]"{x(0)} , and

. -1 .
(MO} = ([®)[D]) [@1'{4(0)}.
o Set up the effective stiffness matrix with a time step A¢. With a constant
At the effective stiffness matrix is constant.

[k] = [mg] + 6Ar [cg] +[kg].
36A7°
e Set up the effective force vector

[ +0AN} = gt + A} + o [mglf(D—-[mg] {1(1- An)}

+ gl (=280 + (=g + e Jin(o)

—(%[mg] + Alt[cg]){n(z _AN} + ( ;Img)+ —— [cg]){n(t— 241)} .

e Solve [k1{n(t+AD} = {f(t+AD}.
o Calculate the acceleration and velocities for the generalised coordinates

{n@t+An} = —[lo{n(HAt)}—15{ﬂ(t)}+6{11(t An}-{n(t-2An}]

{n@+An} = 6—A-t[10{ﬂ(t+At)}—15{n(t)}+ 6{n(z-An}-{n(z-24An}].
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e [tis advised to start with the Newmark-beta method to obtain {n(Af)},

{n@An}, {N(An}, and {n(2A1)} to use Park’s method to calculate

{n(3Ar)}, etc.
e Calculate physical displacements, etc.

{x} = [¥yand + (DN 0r {x} = [Wmamd{F(D} +[D1{n,}
{x} = [@J{n} and {x} = [®J{"ns}-

The simulation time is 200 s with a time increment At = 0.05s and the
modal damping ratio for all modes is § = 0.02.




16 Residual Vectors

16.1 Introduction

Residual vectors have been discussed by John Dickens and Ted Rose in
[Dickens 00, Rose 91]. The modal base, when the modal displacement
method [MDM] is applied, will be extended by residual vectors to account
for the deleted modes. This method is quite similar to the mode acceleration
method (MAM). Dickens proposed to construct a static mode (displace-
ment) with respect to the boundaries based on the residual loads. Rose con-
structed a static mode, again with respect to the posed boundary conditions,
however, based on the static part of the dynamic loads.

Since the residual vectors are treated as modes, they will have associated
modal mass, modal stiffness and damping. With the aid of artificial damp-
ing the responses due to the residual vectors will be minimised.

In this chapter two methods of residual vectors will be discussed:

e The method proposed by John Dickens, [Dickens 00].
e The method discussed by Ted Rose, [Rose 91].

16.2 Residual Vectors

16.2.1 Dickens Method
The eigenvalue problem of an undamped mdof system is written
(IK1- 0 [M1){6;} = {0} (16.1)
[K1{0;} = o;[M1{0,}. (16.2)
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The modal static force can be expressed as
{F;} = [KI{¢;In;, (16.3)
or using (16.1) we may write
{F.} = o;[M]{0;}n;. (16.4)
The total static force is
{F} = [K]{x} = [K][®]{n}. (16.5)
If (16.5) is premultiplied by [(I)]T we obtain
[@)"{F} = [®][KI[®]{n}. (16.6)

Using the orthogonality relations of the mode shapes with respect to the
mass matrix [M] and the stiffness matrix [K];

[®1KI[®] = (o;m), [®1'[MI[®] = (m)
Equation (16.6) can be written as
{n} = (ojm) [@1{F} (16.7)
or for one generalised coordinate m, we achieve

N = ——{0}7{F}. (168)
“m

1

By substituting (16.8) into (16.4) the static modal force {F;} of (16.4),
becomes

{F} = ofIMHoM,; = o[ IMI{o}5—{0)"(F} = LIMIO3} {0} (FD). (169)
o;m

The summation of all modal forces Z{F,.} now becomes

Y {F} = [MI[@1(m) [@'{F}. (16.10)

If not all modes are taken into account in the modal displacement method
(MDM) the residual load {F .} is

res

{FR V== S EREE (M) (m) [@1){F}.  (16.11)
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If the modal base [®] is complete, [<I>]_l and [M]_1 do exist, and with

(@' MI[@]) " = (my™" = (@1 [M]' (@] (16.12)
equation (16.11) becomes
{F..} = (]-[M][®][®] ' [M]"'[@] [@)){F} = 0. (16.13)

We will now construct the displacement vectors [x,,,] that are based on the

res

residual load vectors [F,,] . We now assume multiple-load cases [F,.] .

[Kl[xes] = [F (16.14)

res] ’

with

[Frol = (U1 - [MI[@)[m] ' [@])[F]. (16.15)

Ies

The stiffness matrix is regular because the boundary conditions, to pre-
vent rigid body modes, are implemented. The vectors [x,,] will be made

res

orthogonal with respect to the modal base [®] and indicated by [¢,.,]. This
can be done as follows [Dickens 00]
[K] = [x,es]T[K][xresl and [M] = [xres]T[M] [xres]»
and solving the eigenvalue problem
[KI{y} = (M[M]{y} (16.16)
and, furthermore
(0] = [xe J{W} . (16.17)

The modal base [®] will be augmented by the vectors [¢,,,] , thus we get
a new modal base [\¥]

[¥] = ([P], [$re]) - (16.18)

This modal base [¥] is used to apply the modal displacement method.
The linear mdof dynamic systems is represented by the following matrix
equations of motion

IMI{x(D)} + [CH{x(D} + [K]1{x(1)} = {F(n)}. (16.19)
The coupled linear equations can be decoupled using the mode displace-
ment method (MDM) or mode superposition method. The physical dis-
placement vector x(z) is expressed as follows

x(t) = [¥H{n(®},
with
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e {n(#)} The vector of generalised coordinates.

16.2.2 Rose Method

The static residual vectors, as proposed by [Rose 91] are based on the static
part of the dynamic loads [F] = [{F,}, {F,},...]. (16.14) is now written as
(KX 5] = [F] (16.20)

The stiffness matrix is regular because the boundary conditions, to pre-
vent rigid- body modes, are implemented. The vectors [x,,] will be made

orthogonal with respect to the modal base [®]. The new modal base [\¥]
consists of

[¥] = ([@], [x.s]) - (16.21)

The orthogalisation procedure of the modal base [¥] will now be
described. The following eigenvalue problem will be solved

[KI{Y} = (M[MI{Y}, (16.22)
with
e [K]=[P)[KI[¥] and
o M1 = ¥ MY
The solution of the eigenvalue problem of (16.22) will result in the original

modes, plus new (high-frequency) pseudomodes. The new modal base
becomes

[x] = [YHT}. (16.23)
The physical displacement vector {x(¢)} is expressed as follows
{x(0} = [xKn®}. (16.24)

The following examples illustrate the influence of the residual vectors.
The transient responses of the dynamic system, consisting of three degrees
of freedom, when the first degree of freedom is exposed to a constant force,
will be calculated:

1. The complete system, i.e. all three modes included
2. The first mode only
3. _The first mode only with residual vector correction [Dickens 00]
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The transient responses are calculated numerically with the aid of the
‘Newmark-beta” method [Wood 90], with y = 0.5and B = 0.25. The ini-
tial displacements and velocities at ¢t = 0 are zero.

The undamped equations of motion of the 3 mass-spring system are

100/ x 1 -1 0| © 1
010 ..x.z +-1 2 -1 Xy = 0
001]| 0 -1 2|| x, 0

or
[M1{x} + [Kl{x} = {F(1)}.
1
The force vector {F(t)} = 0 when t<0 and {F(¢)} =4 o t Wwhen ¢>0.
0

The damping matrix [C] will be introduced as modal damping after the
equations of motion are decoupled using the orthogonality relations of the

modes, [®,]"[C][®,] = (28,0

The diagonal matrix of the system eigenvalues (A) and the unit normalised
associated eigenvectors or mode shapes [®] are calculated as

0.1981 0 0 0.7370 -0.5910 0.3280
M= 0 15550 0 |.[®]=]05910 03280 —0.7370|-
0 0 3.2470 0.3280 0.4003 0.5910

The Newmark-beta procedure is as with {x} = [®]{n}, the generalised
mass matrix [mg] = [<I>]T[M][d>] = [I], the generalised stiffness matrix
[kg] = [@]'[KI[®] = (A = (@’®, [fg] = [®1[F(r)] and the diagonal
modal damping matrix is [cg] = 2&(®,) . The following activities shall be
carried out:

e Solve the acceleration {x(0)} = [(I)][mg]_l[(D]T{F(O)} . The initial val-
ues for the generalised coordinates can be calculated with
O} = ([‘I)]T[d)])*l[q)]r{x(o)} and

. -1 .
M)} = (@1'[@]) [@1{x(0)}.
o _Set up the effective stiffness matrix with a time step Az. With a constant
At the effective stiffness matrix is constant.
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B o= X
(k] = I3Atz[mg]+BAI[CgH[kg]-

e Set up the effective force vector

{0+ a0} = 47a(e+ a0} +((55- 1 )ime1 + (5 - 1ica1 (o)

+(zitme+ (§ - Jes)eion + (- tmer + g test Jineoy

e Solve [kI{n(t+AnN} = {f(t+A1)}
e Calculate the accelerations and the velocities for the generalised coordi-
nates with

{ﬁ(t+At)}=BLZ({n(HAt)}—{n(t)}) 3101~ (55-1 i)

((+ 80} = gLdne+ a0 - (o1 - (z5- 1wy -ad K- 1))

e (alculate physical displacements, etc.

{x} = (D0, Din}, {5} = (D00, ){Ms} and
{x} = ([ D{Me}

The simulation time is 200 s with a time increment At = 0.05s and the
modal damping ratio for the elastic modes is & = 0.05 and for the residual
vector & = 0.05

Solution question 1; all 3 modes taken into account.
When the vibrations are damped out the displacements will converge to the
static displacements

X1

%, t = [GH{F} =

X3

W | =

3
2
1
The plots of the displacements {x} are given in Fig. 16.1

Solution question 2; one mode taken into account (no residual vector).
When the vibrations are damped out the displacements do not converge to
the static displacements

Xy 1 3
x, p = [GHF}#31 2

X3 1
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The plots of the displacements {x} are given in Fig. 16.2

MDM 3 modes

Fig. 16.1. Displacements, MDM, 3 modes

Solution question 3; one mode taken into account and one residual vector
[Dickens 00].

When the vibrations are damped out the displacements converge to the
static displacements

X1 1 3
x, (= [GI{F} = 31 2
X3 1

The modal base [W¥] consists of the first mode and 1 residual vector.

0.7370 0.2578
['¥] = {0.5910 -0.1991|-
0.3280 -0.2204
The plots of the displacements {x} are given in Fig. 16.3.

This example is the same dynamic system and has the same applied loads
as in the previous example in this chapter.

This following example illustrates the influence of Rose’s method of resid-
ual vectors.




338 16 Residual Vectors

DM 1 rrode

Fig. 16.2. Displacements, MDM, 1 mode

MDA, 1 mooe + 1 residual vector [Dickens 00]

Fig. 16.3. Displacements, MDM, 1 mode + 1 residual vector [Dickens 00]

The transient responses of the dynamic system, consisting of three
degrees of freedom, when the first degree of freedom is exposed to a con-
stant force, will be calculated:

1. The complete system, i.e. all three modes included

ector correction [Rose 91]
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The same numerical method is used as in the previous example in this chap-
ter.

Calculate physical displacements. etc. with

{x} = [x}{n,}, {x} = [xJ{n«} and {x} = [x]{ni}.

The simulation time is 300 s with a time increment Ar = 0.05s and the
modal damping ratio for the elastic modes is & = 0.05 and for the residual
vector the damping ratio has been taken as & = 0.05

Solution question 1; all 3 modes taken into account.
When the vibrations are damped out the displacements will converge to the
static displacements

X1 1 3
x, { = [GHF} = 30 2
X3 1

The results of the displacements are shown in Fig. 16.1.

Solution question 2; one mode taken into account (no residual vector)
When the vibrations are damped out the displacements do not converge to
the static displacements

X1 | 3
x, { = [GH{F =31 2
X3 1

The results of the displacements are shown in Fig. 16.2.

Solution question 3; one mode taken into account and one residual vector
[Rose 91].

When the vibrations are damped out the displacements converge to the
static displacements

X1 1 3
x, (= [GHF} = 31 2
X3 1

The modal base [¥] consists of the first mode and 1 residual vector.

0.7370 0.0669
[xd-=:10:5910 -0.0517| -
0.3280 —0.0572
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The plots of the displacements {x} are given in Fig. 16.4.

MDA, 1 mode + 1 residusl vector [Fose 91)

Fig. 16.4. Displacements, MDM, 1 mode + 1 residual vector [Rose 91]

16.3 Problems

16.3.1 Problem 1

The transient responses of the dynamic system, consisting of three degrees
of freedom, when the first degree of freedom is exposed to a constant force,
must be calculated:

1. The complete system, i.e. all three modes included
2. The first mode only
3. The first mode only with Dickens residual vector

4. The first mode only with Rose residual vector
The MDM will be applied.

The transient responses must be calculated numerically with the aid of the
‘Park stiff stable” method [D’Souza 84, Park 75]. The initial displacements
and velocities at #=0 are zero.

The undamped equations of motion of the 3 mass-spring system are
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100|| %1 10 =10 0 || % 2
010|3 x, (*]-10 20 =10]3 x, (=1 0 [>
001f| 5 0 -10 20| x, 0
or
[MI{x}+[K){x} = {F()}.
2
The force vector {F(#)} = 0 when t<0 and {F(¢#)} ={ o t when r>0.
0

The damping matrix [C] will be introduced as modal damping after the
equations of motion are uncoupled using the orthogonality relations of the

modes, [@,]'[C][®;] = (2&,w) .

Use the Park procedure below with {x} = [®]{n}, the generalised mass
matrix [mg] = [(I>]T[M][<D] = [I], the generalised stiffness matrix
[kg] = [®]'[KI[®] = Ay = (0%, {fg} = [®)"{F(¢)} and the diagonal
modal damping matrix [cg] = 2E(®,) .

e Solve the acceleration ¢(0)} = [d)][mg]'l[CI)]T{F(O). The initial values
for the generalised coordinates can be calculated with

M)} = (@]"[@]) " [®]17{x(0)}, and
(MO} = ()7 [@]) " (@17 {x(0)} .

e Set up the effective stiffness matrix with a time step Az. With a constant
At the effective stiffness matrix is constant,

[k] = [mg] + oAr [Cg] +[kg] .
36A1°
e Set up the effective force vector

{fz+0An} = {fg(t+At)}+ [mg]ﬂ(t)——[mg]{ﬂ(t Ar)}

. 1
+ o ImgI (- 2At)}+(365°[ g1+ galegl [in(o)

At

10 1 1
‘(6272[’"*”] * A_t[cg]){n(t" AN} + (36At2[’"8] + 6At[cg]){n(t 2A1)}.

e Solve [kl{n(t+At)} = {f(t+AD)}.
e (Calculate the acceleration [and velocities for the generalised coordinates
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[+ A0} = 2o [10{R(+ AN}~ 15{A(D} + 6{R (- AN}~ {A(1-240}]

{n(+An} = gl—At[IO{Tl(t +An}-15{n(H} + 6{n(r-AnN} - {n(r-2A1)}]
e It is advised to start with the Newmark-beta method to obtain {n (A7)},

{n2An}, {n(A)}, and {n(2A1)} to use Park’s method the calculate
{N(AN}, etc.
e (Calculate physical displacements. etc.
eModal base [®] , MDM
eModal base [¥], [Dickens 00]
eModal base [y], [Rose 91]
The simulation time is 200 s with a time increment Ar = 0.05s and the
modal damping ratio for all modes is & = 0.01.




17 Dynamic Model Reduction
Methods

17.1 Introduction

The combining of unreduced finite element models (FEMs) of subsytems to

a dynamic FEM of the complete system (satellite or launcher) will in gen-

eral result in a finite element model with many degrees of freedom (dofs)

and therefore difficult to handle. The responsible analyst, to manipulate the
total dynamic model, will ask for a reduced dynamic FEM description of
the subsystem and will prescribe the allowed number of ‘left’ dynamic dofs

of the reduced dynamic model. The reduced dynamic model is, in general, a

modal description of the system involved.

The customer will prescribe the required accuracy of the reduced
dynamic model, more specifically the natural frequencies, mode shapes in
comparison with the complete finite element model or reference model. For
example the following requirements are prescribed:

e The natural frequencies of the reduced dynamic model shall than deviate
less +3 % from the natural frequencies calculated with the reference
model.

e The effective masses of the reduced dynamic model shall be within
110 % of the effective masses calculated with the reference model.

e The diagonal terms at the crossorthogonality check [Ricks 91] shall be
greater than or equal to 0.95 and the off-diagonal terms shall be less than
or equal to 0.05. The crossorthogonality check is based upon the mass
matrix.

e The diagonal terms at the modal assurance criteria (MAC) shall be
greater than or equal to 0.95 and the off-diagonal terms less than or
equal to 0.10.

Sometimes the requirements concern the correlation of the response
curves obtained with the reduced dynamic model and the reference model.
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Reduced models are also used to support the modal survey, the experi-
mental modal analysis. The reduced dynamic model will be used to calcu-
late the orthogonality relations between measured and analysed modes.
This reduced model is called the test-analysis model (TAM) [Kammer 87].
In the following sections 7 reduction method will be discussed:

The static condensation method [Guyan 68]

The dynamic reduction method [Miller 80]

The improved reduced system (IRS) [O’Callahan 89]

Craig—Bampton (CB) reduction method [Craig 68]

Generalised dynamic reduction (GDR) method [Gockel 83]

System equivalent reduction expansion process (SEREP) [Kammer 87]
Ritz Vectors [Escobedo 93]

All reduction procedures mentioned are based upon the Ritz method
[Michlin 62].

17.2 Static Condensation Method

In general it is required to reduce the number of dynamic dofs of a finite
element model (dynamic model) applying the static condensation method,
often called the Guyan reduction [Guyan 68], to a specified number of
dynamic dofs. A reduced dynamic model with 100 dynamic dofs is quite
suitable. The kept dofs will be denoted by {x,} and the eliminated dofs by

{x,}. Furthermore we assume there are no applied external loads {F,} .
The undamped equations of motion are

[M1{x} +[Kl{x} = {F}. (17.1)

In (17.1) the mass matrix [M], the stiffness matrix [K] and the displacement
vector can be partitioned as follows

Maa Mae ).C'a + Kaa Kae { xa } = { Fa } — { Fa }' (17.2)
Mea Mee -i:e Kea Kee xe Fe 0
The {x,} dofs will represent large inertia forces with respect to the inertia

forces related to the {x,} dofs. The large masses and second mass moments
of inertia are collected in the mass matrix [M,,]. The inertia loads

[M,1{x,} are significantly larger than the other inertia loads
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(M, J{xe}, Mg 1 {xe}, M 1{Xa} « [My,]{xa}. (17.3)

Only the inertia forces [M,,]{x,} are maintained in (17.2), so

{Maa } Xa +[KﬂaKaeHxa}={Fa}={Fa}. (17.4)
00 x‘g Kea Kee Xe Fe 0

Using the equation related by the {x,} dofs we are able to express the {x,}
dofs into the {x,} dofs.

[Keol{x.} + (K. H{x.} = {0}. (17.5)
The inertia loads in (17.5) are neglected. We can express {x,} into {x,}

{x,} = ~[K, ) ' [K, {x,} = [G,ol{x,}. (17.6)

Only the stiffness is involved in (17.6) and therefore we talk about static
condensation.
The total displacement vector {x} will be projected on the kept dofs

{x.}

{x} = { Xq } = {GI}{X"} = [T, 1{x,}. (17.7)

xe ea

The total kinetic energy in the dynamic system is
1,..7T . 1. ..T - )
T = E{X} M{x} = E{x“} (7,1 IMIT,{x,}. (17.8)
The reduced-mass matrix [A_/Iaa] becomes

[Mad] = [T.,)"IMIIT,,]. (17.9)

The total potential energy in the dynamic system is
1, .T 1 T T
U= E{X} [K{x} = > 1xa} [T, ) [KIT,){x,} (17.10)
Analogous to the reduced-mass matrix [Maa] the reduced-stiffness matrix
[Kaa] becomes

[Kaa] = [T,,1"IKIIT,,]. (17.11)
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The selection of the kept dofs {x,} is not always trivial. The kept dofs

shall be selected in such a way that the mode shapes can be described as
good as possible. The dofs associated with large masses shall be selected.
As a guideline the following mathematical selection may be used to select
the {x,} dofs. At least the dofs shall be selected for which applies

1 [k
— U<
5 /mii_ 1.5, (17.12)

where

® k; the diagonal term of the stiffness matrix [K], translational and
rotational

e m; the diagonal term of the mass matrix [M], translational and rota-
tional

e f .. Mmaximum frequency of interest

Allen in [Allen 93a] described a more or less automatic way of selecting the
analysis dofs {x,} , however, it is still based upon (17.12).

The reduced eigenvalue problem can now be written as

{[Maa) - A, [Kaal }{0,} = 0, (17.13)

with
e {¢,} the eigenvector of the reduced eigenvalue problem
e ), the eigenvalue associated with the eigenvector (mode shape) {¢,}

The eigenvectors that belong to the complete set of dofs, using (17.7), is

D, 1
[@gr] = [(D} = {GJ[%], (17.14)

e €
where
e [®,] the eigenvectors associated with the eliminated dofs
¢ [G,,] the transformation matrix as defined in (17.6)

A 10 dofs dynamic system (Fig. 17.1) will be used to illustrate the static
condensation method. The constants are m = 1 and & = 100000. The
dynamic system will be fixed in x;q. First, the natural frequencies and
modes of the full system will be calculated.

The systems matrices are as follows
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1000000000 1-100000000
0100000000 -130000-2000
0010000000 003-100-2000
0001000000 00-11000000
(M] = m[0000100000| 4y _4[0 000 1-10000
0000020000 0000-13-2000
0000004000 0-2-200-29-300
0000000300 00000O0-36-30
0000000030 000000O0-37-4
0000000003 (000000 0 0-4 4]

X5 %m m T X
k
X6 2m %mk T
2k &
N %m é 2%k
% ” 2k
Xg 3m " 3

3k zk
; "]

4k
X10 2m

Fig. 17.1. 10 mass—spring dynamic system

The natural frequencies {f} (Hz) calculated are
{f} = [14.25, 36.69, 38.52, 47.43, 63.69, 75.91, 90.25, 93.00, 106.51 JT.
The first four modes [®] are scaled such that

[®]"[M][®] = [I] and [®)[K][®] = () = (2nf))




348 17 Dynamic Model Reduction Methods

0.3064 -0.3878 —0.6533 —0.3762
0.2819 -0.1817 -0.2706 —0.0421
0.2819 -0.1817 0.2706 -0.0421
0.3064 -0.3878 0.6533 -0.3762
0.3204 0.6591 0 03327

[@] = .
0.2948 0.3088 0 -0.0373
0.2583 -0.0304 O 0.1435
0.1750 -0.0333 0 0.3417
0.0777 -0.0185 O 0.2364
0 0 0 0

We select the following kept dofs; {x,} = | x),x4, x5, x; |.
The natural frequencies {f,} of the reduced eigenvalue problem, (17.13),
are

{f,} = [14.39,37.86,38.98,52.98 |".

The modes [®;,] are scaled such that [CDGR]T[M][CDGR] = [I].

To compare the dynamic properties of the condensed dynamic system
with the complete or reference dynamic system we can compare the natural
frequencies with each other and of course the mode shapes. To do so we
have to lengthen the mode shape of the reduced system (4 dofs) to a total
number of 10 dofs.

0.3134 -0.4059 -0.6708 —0.4390
0.2802 -0.1483 -0.2236 0.0347
0.2802 -0.1483 0.2236 0.0347
0.3134 -0.4059 0.6708 —0.4390

_ 10.3269 0.7217 0 -0.4577
[Pgr] = .
0.2946 0.2276 0 0.0285
0.2635 -0.0195 O 0.2716
0.1677 -0.0124 0 0.1728
0.0719 -0.0053 0 0.1728
0 0 0 0

The modes of the reduced dynamic model will be compared to the complete

dynamic model with three methods; the modal assurance criteria and the

normalised crossorthogonality matrices [Friswell 95, Maia 97] and the

crossorthogonality check [Ricks 91]:

o The modal assurance criteria (MAC). The absolute value of the MAC is
between 0 and 1. A value of 1 means that one mode shape is a multiple



17.2 Static Condensation Method 349

of the other. The MAC matrix is defined as
2
(D] [ D))

(CIRCINCIMGCIN)
e The normalised crossorthogonality (NCO). The absolutes values of the
NCO are between 0 and 1. A value of 1 means that one mode shape is a
multiple of the other. The modified MAC is defined as

(@) [M][@gg))°
(@1 M@ ([® ] IMI[Dg])
e Crossorthogonality check. [Cl= ([®] [M][®gg]), [@) [MI[®] = (I)

MAC =

NCO=

and the terms on the main diagonal of the ([(I)GR]T[M] [®sz]) are one.

The MAC becomes

. ) 0.9980 —0.0052 0.0000 0.0251
([P] [DgrD) _ |-0.0017 0.9897 0.0000 —0.0669

MAC= T T = ’
(] [@)([PgR] [PgRD) 0.0000 -0.0006 0.9950 0.0000
~0.0540 0.0459 0.0000 0.8054
and the NCO
, 2 0.9995 0.0002 0.0000 -0.0013
NCO= (2] [M][Pgl) _ |-0.0004 0.9775 0.0000 —0.0194,

(@] [MI[@]([ Dl IMI[@gg]) | 0.0000 0.0000 0.9950 0.0000 |’
~0.0019 0.0612 0.0000 0.7444

and finally the crossorthogonality

~0.9996 0.0052 0.0000 —0.0092
T — —
(Cl= (01 [M][@y] = | 00004 0.9888 0.0000 ~0.0105)
0.0003 0.0000 —0.9975 0.0000
~0.00151 0.0330 0.0000 0.8629

The diagonal terms of the MAC, NCO and crosscorrelation [C] show us
the correlation of the mode shapes of the reduced dynamic model with the
reference model. The off-diagonal terms shows us the coupling between the
correlated modes. The first 3 modes, of both the reduced and reference
dynamic modes, do correlate very well. The fourth mode of the reduced
model is less correlated with the fourth mode of the complete model.
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17.2.1 Improved Calculation of Eliminated Dofs

Allen in [Allen 93b] proposed a method to improve the part of the eigen-
vector {¢,} with respect to (17.14). The eigenvalue problem of the com-

plete dynamic system can be written as

(—A{MW M‘"’} + {Kua KD{ % } - { 0 } (17.15)
Mea MEL’ Kea Kee ¢e 0
Using the second equation from (17.15) we have

(K, {0} +[K {0} - MM, 1{0,}-A[M,]{0,.} = {0}. (17.16)
The vector {¢,} can be related to {¢,} using (17.16)

{0, ,} = -IK,,- ijee]—l [Kpo— MM, 1{0,;}. (17.17)

The matrix [K,,-A;M,,] must be inverted for every eigenvalue A; and that
is a very inefficient method. Instead of using one mode {¢;} we proceed
with the complete modal matrix [®], hence in accordance with (17.16)

(K [@,] + [K, [P ] - (WM, I[P, ]-(M M, ][P,] = {0}.  (17.18)

[®,] can be expressed in [®,]

[®,] = [G,1[®,]+ (ANK,,] ' [M,][®,]+ (A)IK, 1 [M,I[®,], (17.19)

with
¢ [G,,]the transformation matrix as defined in (17.6)
e (A, the diagonal matrix if eigenvalues came from (17.13)

An iterative scheme can be set up
[©,17 = [G,,][®,1+ (ANK, 1" [M,][®,] + MK, (M, )[2,]" (17.20)
with
o [@,]" the first result from (17.6), [®,] = [G,,][®,]
o [(I)e](z) the second updated result of the part [®,] of the eigenvector [®]

The complete eigenvector becomes
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)
(2) _ a
[@]?® = L}(z)] (17.21)

The iteration scheme may be repeated.

17.3 Dynamic Reduction

The undamped equations of motion are with zero external forces, (17.1)

[M]{x} +[K]{x} = {0}.
In (17.1) the mass matrix [M], the stiffness matrix [K] and the displacement
vector can be partitioned as follows, (17.2)

Maa Mae ~7‘C‘a + Kaa Kae { xa } - { 0 }
Mea Mee .i:‘e Kea Kee xe O
with

e {x,} are the kept degrees of freedom
e {x,} are the eliminated degrees of freedom

The eigenvalue problem becomes

Kaa Kae _ ;\’ Maa Mae { ¢a } = { O } . (17'22)
Kea Kee Mea Mee ¢€ 0
The first equation of the matrix (17.22) is, [Miller 80],

([Keo] = MM, {0, + ([K, ] -MM, D{o,} = {0}. (17.23)

From (17.23) we can express {x,} in {x,} and the relation is given by

{0.} = —([Kee]—l[Mee])_l([Kea]—K[Mea]){%} = [T, Ho,}- (17.24)

Unfortunately the transformation matrix [7,,] involves the eigenvalue A

which is not known. As a starting point we may substitute the eigenvalues
obtained by (17.13) one by one to calculate the transformation matrix

[T,,].
The transformation [7,,] , matrix (17.24), can be developed in a series of

A, i.e. until O(A%), [Miller 80]
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(T,,] = [K,,]'[K,,] + M=K, 1" [M,,] +[K,, ] [M,IIK,1 " [K,,]) + O\%)
(17.25)

The reduced-mass matrix [A—/Iaa] becomes
[Mad] = [T,,]"IMIIT,,]. (17.26)

Analogous to the reduced-mass matrix [A_/Iaa] the reduced-stiffness matrix

[I}aa] becomes

[Kaa] = [T, 1 [KIT,,]. (17.27)

17.4 Improved Reduced System (IRS)

O’Callahan [O’Callahan 89] proposed a procedure for an improved reduced
system model. The IRS method is an extension of the Static Condensation
technique [Guyan 68]. The undamped homogeneous equations of motion
are (17.1)

[MI{x} +[K1{x} = {0}.
Assuming harmonic displacements, etc. the displacement vector can be
written

x(1) = X(0)d®, (17.28)
and (17.28) becomes

[KI{X(0)} = o’ [M]{X(0)}. (17.29)

This means that in the absence of external and damping forces the harmonic
inertia forces are in equilibrium with the harmonic elastic forces. The dis-
placement vector {X(w)} will be projected on the kept displacements

{X,(®)} using (17.7), [Guyan 68], hence
X(@)} = { Xa(@) } - { ! }{xaw)} = [T H{X(@}. (1730
Xe((o) Gea
After substitution of (17.30) into (17.29) becomes
[K{X(0)} = (Dg[M][Tm]{Xa(w)}- (17.31)

With the aid of (17.13) we are able to define the vector wz{Xa(m)}



17.4 Improved Reduced System (IRS) 353

mz{Xa(w)} = [A_laa]_l[l_(aa]{xa((l))} . (17.32)

Thus, (17.31) now becomes
[KH{X(®)} = MI[T,,)[Maa] " [Kaal{X,(0)} (17.33)
Further expanded, this gives

aa Ka

[K]{X(0)}= [K ) H Xo(®) } = [MI[T,,][Maal [Keal{X, ()} . (17.34)

ea e Xe((‘o)

The vector of eliminated dofs {X,(w)} can be recalculated

00 - 1=
{X,(0)}= [G,,{X, (0)} + {0 K_I}[M][Tw][Maa] I[Kaa]{Xa((l))}. (17.35)

ee

The complete displacement vector {X(®)} can be related to {X,(w)}

X 00 S
x= [KN i 300 0 T, M) Red [1X,0)) (17.36)
{X,(0)} 0

ee

Equation can be written

[X(0)}= {{X"("’)}} = [Tpsl{X,()} (17.37)

{X ()}

The reduced-mass matrix and the reduced-stiffness matrix can be achieved
analogously to (17.9) and (17.11).

The reduced-mass matrix [IT/Ims] becomes
[Mirs] = [Tjpsl IMI[T ], (17.38)

and analogous to the reduced-mass matrix [A—lle] the reduced-stiffness

matrix [I_(ms] becomes

[Kirs] = [Typs) [KI[Tgs) - (17.39)

The IRS reduced-mass matrix and reduced-stiffness matrix are an
improvement to the reduced matrices obtained with the static condensation
technique [Guyan 68]. All kept dofs have a physical meaning, no mathe-
matical dofs are involved. The IRS reduced-mass matrix may be used to
check the orthogonality relations of the mode shapes measured during the
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modal survey test (modal analysis) at a limited number of measurement
locations (accelerometers). The number of measured dofs is, in general,

equal to the kept dofs {x,}.

We select the following kept dofs; {x,} = | x;.x4, x5, x7JT and take into

account the first and second modes to reduce the model with the IRS
method.
The natural frequencies {figq} of the reduced eigenvalue problem are

{frs} = L14.25,36.77,38.53,49.20 |".

The modes [®,;,] are scaled such that [d),RS]T[M][d),RS] = [I].

To compare the dynamic properties of the condensed dynamic system to
the complete or reference dynamic system we can compare the natural fre-
quencies with each other and, of course, the mode shapes. To do so we have
lengthen the mode shape of the reduced system (4 dofs) to a total number of
10 dofs.

-0.3064 0.3936 -0.6565 0.4280
—-0.2820 0.1770 -0.2626 —0.0085
-0.2820 0.1770 0.2626 —0.0085
-0.3064 0.3936 0.6565 0.4280
-0.3206 -0.6761 O 0.4345

[Pgs] = .
-0.2945 -0.2872 0 -0.0139
-0.2585 0.0285 0 -0.2113
-0.1748 0.242 0 -0.2611
-0.0774 0.0118 0 0.1428
0 0 0 0 |
The MAC becomes

. s 0.9310 —0.0002 0.0000 —0.0933
([P] [Pgs)) _ |-0.0006 1.0000 0.0000 —0.0986

MAC= T T = ’
(D] [P ([ D] [®ps)) 0.0000 0.0000 0.9999 0.0000
0.0623 0.0384 0.0000 0.9850
and the NCO is
, ) 1.0000 0.0001 0.0000 0.0003
NCO= ([P] [MI[Ps]) _ |-0.0001 0.9981 0.0000 ~0.0168

(@) IMI[®]([®,5] IMI[®,6]) | 0.0000 0.0000 0.9999 0.0000
0.0006 0.0294 0.0000 0.9117

and
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—-1.0000 0.0000 0.0000 -0.0002
0.0000 -0.9991 0.0000 -0.0086
0.0000 0.0000 -0.9999 0.0000 |
0.0003 -0.0150 0.0000 -0.9549

The diagonal terms of the MAC, the NCO and the modified [C] show us
the correlation of the mode shapes of the reduced dynamic model with the
reference model. The offdiagonal terms show us the coupling between the
correlated modes. The first 3 modes, of both the reduced and reference
dynamic modes, do correlate very well. The third mode does not show any
coupling with the other modes. The fourth mode of the reduced model is
now better correlated with the fourth mode of the complete model com-
pared with the Guyan reduction method.

[Cl= [@]T[M][Pgg] =

17.5 Craig—Bampton Reduced Models

The Craig—Bampton method is discussed in several publications [Craig 68,
Craig 77, Craig 81, Craig 00, Gordon 99] and is one of the most favourite
methods for reducing the size, number of degrees of freedom, of a dynamic
model (finite element model). The undamped equations of motion are
(17.1)

[MI{x} +[Kl{x} = {F()}.
We denote the external or boundary degrees of freedom with the index j
and the internal degrees of freedom with the index i. The matrix equations
(17.1) may be partitioned as follows

{M“f M"f] Yy {K“ Kifj{ g } - { Fi } (17.40)
M Mij | x| (K Kyl U F;

In [Craig 68] it is proposed to depict the displacement vector {x(¢)} ona
basis of static or constraint modes [®,] with {x;} = 1 and elastic mode

shapes [®,] with fixed external degrees of freedom {x;} = {0} and the
eigenvalue problem ([K;;] - (A} [M;])[®;] = [0]. We can express {x} as

Xj

{x} = [®,]{x;} +[®,]{n,} = [D, mpl{ } = [PI{X}.  (1741)

My

Thestaticmmodes-can-be-obtained, assuming zero inertia effects,
{F;} = {0}, and successively prescribe a unit displacement for the bound-
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ary degrees of freedom, thus {x;} = [/]. So we may write (17.40) as fol-

lows
[Kﬁ Kifj{ %i } - { 0 } (17.42)
K K| L x; R;

From the first equation of (17.42) we find for {x;}

[K;H{x;} + [K;llx] = 0, (17.43)
hence
{x} = (K, (K1 {x} (17.44)
and therefore
[®,] = -[K]' K] = ~[K;1' (K] (17.45)

The static transformation now becomes
{x} = { i } = M {x} = [®){x}. (17.46)
X 1

Assuming fixed external degrees of freedom {x;} = {0} and also assum-

ing harmonic motions x(t) = X(m)d“‘” the eigenvalue problem can be
stated as

([K;l = Ay p M DX (A, )} = {0}, (17.47)
or, more generally, as
([K;i] = (A M D[Dy,] = {0} . (17.48)
The internal degrees of freedom {x;} will be projected on the set of
orthogonal mode shapes (modal matrix) [®;,], thus

{x;} = [®,1{n,}- - (17.49)
The modal transformation becomes
{x} = { i } - ﬁ;‘v}{np} = [®,1{n,}. (17.50)

Xj

The Craig—-Bampton (CB) transformation matrix is (17.41)
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{x} = [@, %]{ & }= [¥){X}
n,

with
e [®,] the static or constraint modes
o [D)] the modal matrix

o {x} the external or boundary degrees of freedom

{n,} the generalised coordinates. In general, the number of generalised

coordinates p is much less than the total number of degrees of
freedom n = i+j, p«n.

The constraint modes will introduce displacements due to adjacent struc-
tures in a static way, while the elastic modes will introduce dynamic effects
generated internally in the structure.

The CB transformation (17.41) will be substituted into (17.1) presuming
equal potential and kinetic energies, hence

(¥ IMINYIEXY + (PTIKIYHXY = [¥1{F()}- (17.51)

Further elaborated we find
~ . ~ T
[ij Mj,,] %ol [ij ij}{ Y }= {‘DU q’p}
M, <mp> MNp L <kp> My o
with

. [1l~4jj] the Guyan reduced mass matrix (j-set)

{ F; } (17.52)
F;

[Kjj]1 the Guyan reduced stiffness matrix (j-set)

(mp) the diagonal matrix of generalised masses, (mp) = [<I>p]T[M][(I>p]

(k,) the diagonal matrix of generalised stiffnesses,
(k) = [®,1K[®,] = (A,)(m)

[K,,)= (0,1 [K,1[®,]+ K@, = (- K1 K, [K;] + [K;DI®,] = [0]
(see (17.45))

(K, = [K,,) = [0]

Thus (17.52) becomes
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- . - T
Mj; M;, 1] % (,|Kj; O { i }= {q’zj q’p} { Fi } (17.53)
M, (m)|| M 0 (k)M 10 F;

Finally

[Megl{X} + [Kegl{X} = [¥1'{F}, (17.54)

with
® [Mcg]the CB reduced-mass matrix
® [Kcglthe CB reduced-stiffness matrix

The CB matrices are j+p, j+p sized matrices. Equation (17.54) is fre-
quently applied for component-mode synthesis methods (dynamic substruc-
turing).

The accuracy of the CB reduction technique is very satisfactory and was
discussed in [Claessens 96].

17.6 Generalised Dynamic Reduction

The generalised dynamic reduction (GDR), [Gockel 83, Wijker 91], is a
very elegant method to reduce considerably the number of degrees of free-
dom of a dynamic finite element model. The GDR method is a mathemati-
cal extension of the Guyan static reduction technique [Guyan 68]. A GDR
reduced dynamic model will represent, to a certain specified maximum fre-
quency f,., (Hz), the modal properties very well; i.e. the natural frequen-
cies, the mode shapes, the effective masses, etc. with reference to the
complete finite element model. The undamped homogeneous equations of
motion are (17.1)
[M1{x} +[Kl{x} = {0}.

The boundary and subsidiary conditions are already incorporated into the
undamped equations of motion, (17.1). The total number of independent
degrees of freedom is indicated with n. The n degrees of freedom are parti-
tioned into two sets of degrees of freedom:

1. the kept a degrees of freedom
2. the eliminated e degrees of freedom

For a reduced dynamic model the number of a degrees of freedom a «n.
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In (17.1) the mass matrix [M], the stiffness matrix [K] and the displace-
ment vector can be partitioned as follows

I:Maa Mai )'C'a + Kaa Kae{ Xq } = { 0 } (]755)
M, M,|| x, K,, K.l x, 0

The elimination of the e degrees of freedom is done with the static conden-
sation method [Guyan 68].

The reduced-mass matrix [A_/Iaa] becomes with (17.9)
[Maal = [T,,) [MIIT,,].
Analogous to the reduced mass matrix [Ma.] the reduced-stiffness matrix
[I_(aa] , using (17.11), becomes
[Kaal = [T, 1'IKIIT,,]
To improve the static condensation [Guyan 68] an additional condensa-

tion will be applied on the e dofs. When the a dofs are fixed the following
eigenvalue problem is obtained.

([K ]2 M, {9} = {0}. (17.56)
Equation (17.56) can be rearranged
([K, ] =AM, ] +v[M,,]1-vIM, ]D{6,} = {0}, (17.57)
or
([K.]+vo[M, D{o.}= (A, + V)M, {0} . (17.58)

Equation (17.58) can be written as

-1 - I
(K. ) +v[M,. D) M, ){¢.}=[A, {0 }= (le+n){¢e}' (17.59)
In the eigenvalue problem (17.59) the eigenvalue A, has been shifted by

-v. The eigenvector {¢,} remains the same.

The eigenvalue can be approximated using the power method. The
power method is a matrix iteration method. The power method will con-

verge to the largest eigenvalue or the smallest value of (A, +v).

1
(A +v)
The iteration scheme after the n + 1 -th iteration is

Yonair=EAg{Y., .}, (17.60)
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or
(K J+o[M DY, .01} = M Y, ,}. (17.61)

Assume the start vector {¥, |} can be expressed in the original eigen-
vectors [D,]

e

{‘I’e’l} = a1{¢e,1}+a2{¢e’2}+ ....... +ae{¢e’e} = Z(Ik{d)e’k}. (17.62)
k=1
After n iterations

e

{¥..} = Yo (x H)) {0,,4} (17.63)

k=1

After n iterations a good approximation of the largest eigenvalue will be

obtained if
1 n
Ao+

1
Ae 1+ v

For a good convergency of the eigenvalue 1, ; in a range of

<d«l. (17.64)

0< A 1 S hpay = CRfing)’ (17.65)
with
e f . the maximum frequency (Hz) of interest

To achieve a good convergency (A, ; «v and A, , = A

max )

v< xmax(l E) e=10. (17.66)

With & = 10® and the number of iterations n = 10 the shift factor
becomes

v = 0.18834% . (17.67)
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The elements of m start vectors [¥, (] are random numbers. The start

vectors are independent of each other. After n iterations and using (17.60)
we have obtained groups of vectors

¥, oL [¥, i1, e I, 1LY, ] (17.68)

A new set of g vectors [X, g will be defined, with g « e,

(X, ) = (¥, (¥ i1 (e ool o). (17.69)

The number g dofs must be taken y times the number of eigenvalues
below A [Gockel 83] suggest that Y= 1.5. The number of eigenvalues

below A
The vectors [X, gl are made orthogonal with respect to the mass matrix
[M,,], hence

max °*

can be obtained with the Sturm sequence [Strang 88] method.

max

(v, )'(M,,1[Y,, ] = diagonal matrix . (17.70)

This can be done with the QR method [Strang 88] or the Gram—Schmidt
method [Strang 88]. For an illustration of this the QR method will be
applied. A square matrix [A] may be decomposed with the QR method as
follows

[A] = [Q][R], (17.71)
with
e [(O] the matrix containing a set of orthonormal vectors, and

(0110} = 1.
Define the matrix [Y,, 4] such that
(Y, 1 = (X, 1[B,I- (17.72)
Cholesky decomposes [Strang 88] the mass matrix [M,,] as follows
[M,] = [L,IIL,]". (17.73)
Equation (17.70) now becomes
[Bq]T[Xe,q][Lee][Lee]T[Xe,q][Bq] = diagonal matrix . (17.74)

This means that vectors in the matrix [Lee]T[Xe, ,){B,} form an orthogonal
set of vectors. The matrices [Q] and [R] are the result of a QR decomposi-
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tion on the matrix [L,]"[X, ]. Thus [L,]1"(X, ] = [QI[R]. Assume
[B,] = [R]™', which results in

(X, ] = [Y, ,l[R], (17.75)
and
(L) [X. ] = [L.]'[Y, ][R] = [QI[R]. (17.76)
Finally we obtain
[Yevq] = [Geq] = ([Lee]T)_l[Q]~ (1777)

The displacement {x} is expressed as follows

X, _ | 1 0 |1 0 Xe | _
{x} = = {G J{xa}+ [Gej{nq} = {Gea Gej N (7,,{x,}. (17.78)

xe e q
The reduced-mass matrix [M,,] becomes

(M,,] = [T, 1" [MIIT,,]. (17.79)

Analogous to the reduced-mass matrix [M,,] the reduced-stiffness matrix
[K,,] is

[K,,] = [T, "[KIT,,]. (17.80)
The GDR reduction method is very similar to the CB method.

17.7 System Equivalent Reduction Expansion
Process (SEREP)

The SEREP is proposed by [Kammer 87] and is based upon a partitioning
of the calculated mode shapes in combination with pseudo-inversion of
matrices.

The displacement vector x(#) is projected on the modal matrix [®]. The
number of m kept mode shapes is much less than the total number of

degrees of freedom n, hence m « n. The displacement vector can be written
as

x(1)) = [@Kn()}, (17.81)
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with
¢ {n(r)} the vector of generalised coordinates.

The displacement vector x(¢) will be partitioned into two sets; the kept
set of degrees of freedom denoted by a and the eliminated set of degrees of
freedom denoted by e, thus

{ Ya } = [‘D“}{n}, (17.82)
xe QE

We will express {x} in {x,} as follows
{ *a } = {I:I{xa} = [Teumme 1%, - (17.83)
xe Tea
The a set of the displacement vector {x,} can be written as

{x.} = [@]){n} (17.84)

We want to express the vector of generalised coordinates {n} in {x,}.
However, the inverse of the rectangular matrix [®,] does not exist. Both

sides of (17.84) will be multiplied by [CI)a]T , thus

[@,1{x,} = [@,]'[®,]{n}. (17.85)
The matrix [®,]'[®,] is a square matrix and in general the inverse of that

matrix exists. The generalised coordinates {n} are expressed in {x,}

mi= (@110, 1,17 {x,} (17.86)

The matrix ([d)a]T[(Da])_l[d)a]T is called the pseudo-inverse matrix of the
modal matrix [®,], hence

[@,1" = (0,1, [@,1". (17.87)

The displacement vector of eliminated degrees of freedom {x,} can be
expressed in the set of kept degrees of freedom {x,}. From (17.82) we can
write

frgh=ol@al{n}, (17.88)
and with (17.86) we obtain
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{(x,} = @102, 1@, [®,17{x,} = [T, ]{x,}. (17.89)

The complete displacement vector {x} can be expressed in {x,}, see
(17.83)

x [0,1(10,17[0,1) [®,] ea

e

xa 1 1
= Alxat= | {15} = Miammed {x,} - (17:90)

The reduced-mass matrix [Mggggp] becomes

(Mggrep] = [Txammer] IM1 Tiammer] - (17.91)

Analogous to the reduced-mass matrix [Mggpgp] the reduced-stiffness
matrix [Kgppep] 18

[Kserep] = [TKammer]T[K][TKammer] . (17.92)

The SEREP reduction method will provide ‘physical’ educed matrices.
In general, the kept degrees of freedom {x,} will correspond to measure-

ment locations and directions.
We select the following kept dofs; {x,} = | x;.x4, x5, x7JT (Fig. 17.1) and

take into account the first and second modes to reduce the model with the
SEREP method.

The modes [®] are scaled such that
[@]1"[M][®] = [1] and [®]'[K][®] = (&) = {(2mN")

0.3064 —0.3878
0.2819 -0.1817
0.2819 -0.1817
0.3064 —0.3878
0.3204 0.6591
0.2948 0.3088 |
0.2583 —0.0304
0.1750 -0.0333
0.0777 -0.0185
L O 0 .
The first two calculated natural frequencies of the reduced system are

{£,} = 114.25,36.69 |".

[@] =
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Four natural frequencies are calculated but the third and the fourth natural
frequencies have no physical meaning. Only two modes of the reference
dynamic model are taken into account.

The modes [®gggep] are scaled such that [¢SEREP]T[M][®SEREP] = [1]

-0.3064 —-0.3878
-0.2819 -0.1817
-0.2819 -0.1817
-0.3064 -0.3878
-0.3204 0.6591
-0.2948 0.3088 |
-0.2583 -0.0304
-0.1750 -0.0333
-0.0777 -0.0185
L0 0
The MAC and the modified MAC become

MAC= ([0 [Dgrer))’ ~ [1.0000 -0.0003}

(01" ® 1) ([Pgerep] [Psrep])  |=0-0006 1.0000

[Pserer] =

and

NCO= (12 M) [ Peree]) _ {1.0000 —0.0004} _

(@1 [M][®@]([Pprep] [MI[@gprep])  |=0-0004 1.0000
The first two modes of the reduced model, associated with the first two nat-

ural frequencies, {f,} = | 14.25, 36.69JT, do correlate very well with the
first two modes of the reference model.

17.8 Ritz Vectors

The set of independent base vectors, the so-called Ritz vectors, to reduce
the dynamic model mathematically are created using only a static analysis.
The dynamic loads will be applied to the model of the structure quasistati-
cally. The undamped equations of motion of the structure, applying
dynamic loads, of (17.1), are

[M]{x} +[K]{x} = {F}.
For a base excitation the quasistatic loads (QL) are defined as:

{Fou} = IMI[T1{u}, (17.93)
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where:
o {Fq.} isthe vector of quasistatic loads

o [T] is the rigid-body motion vector in a certain direction with
respect to the point of base excitation, translation or rotation.

o {u} the base acceleration, translation or rotation.

e [T1{u} is analogous to the gravitational field.

Proper boundary conditions prevent a singular stiffness matrix [K], so the

flexibility matrix [G] can be calculated [G] = [K ]_1 .
We will solve the following static problem

{§1} = [G{Fq.}- (17.94)

The displacement vector { ;1} is normalised with respect to the mass
matrix [M],

[V IMI{y,} = 1. (17.95)

The new displacement vector {y,} can be obtained with

{§1}T[M]{§1} =cp{yt = bt (17.96)

o

The other Ritz vectors can be calculated as follows

e Calculate displacement vectors { y}};
{yk} = [G][M]{yk—l}?k = 17 27 --,P
e (Calculate scalars ck;{yj}T[M]{;zk} =c,j=12,..k-1

e Create a orthogonal set of vector {y;},k = 1,2,..p with the Gramm-
k-1

Schmitt method {y} = {ys} - ZCj{ y;} and normalise the vector {y}
j=1

such that {yk}T[M]{yk} = 1,k = 1,2,.,p. The same procedure as for

{y,} is applied.

The displacement vector {x(#)} is projected on the Ritz vectors [Y]

[Y] = [}’17 )’27 ~--,)’p] ’ (1797)

hence
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{x(0} = [YKp(n)}. (17.98)

The reduced mass-matrix [Mpg,,] becomes

[Mgi,) = [Y1'IMI[Y]. (17.99)

Analogous to the reduced-mass matrix [Mpg,,] the reduced-stiffness matrix
is [Kgy,)

[Kpi) = [Y'[KI[Y]. (17.100)

17.9 Conclusion

Reduced models are also used to support the modal survey, the experimen-
tal modal analysis. The dofs in the reduced dynamic model are related to
measurements. The reduced dynamic model will be used to calculate the
orthogonality relations between measured and analysed modes. This
reduced model is called the test analysis model (TAM) [Kammer 87].
Reduction methods that will give a TAM are:

e The static condensation technique [Guyan 68]

The dynamic reduction method [Miller 80]

The improved reduced system (IRS) [O’Callahan 89]

System equivalent reduction expansion proces (SEREP) [Kammer 87]

The other methods:

e Graig—Bampton (CB) reduction method [Craig 68]

e Generalised dynamic reduction (GDR) method [Gockel 83]
e Ritz vectors [Escobedo 93]

will result in a hybrid reduced mathematical dynamic model; dofs related to
physical dofs combined with mathematical (generalised) dofs.
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18.1 Introduction

The component mode synthesis (CMS) or component modal synthesis
[Hintz 75] or modal coupling technique [Maia 97] is used when compo-
nents (substructures) are described by the mode displacement method
(MDM) and coupled together (synthesis) via the common bounda-
ries{x,}in order to perform a dynamic analysis, e.g. modal analysis,

responses, on the complete structure (assembly of substructures). The CMS
method can only be applied to linear structures. The component mode syn-
thesis method can also be applied on components for which the modal char-
acteristics were measured in combination with finite element reduced
dynamic models. Many papers and reports are available in the open litera-
ture; e.g. [Craig 68, Craig 76, Craig 77, Curnier 81, Lacoste 83, MacNeal
71 Stavrinidis 84, Craig 00].

In general, a component or substructure is a recognisable part of the
structure, e.g. for a spacecraft; the primary structure, the solar arrays, the
antenna, large instruments, etc.

In the past, the CMS method was applied to significantly reduce the
number of dofs due to the imposed limitations on computers, however,
nowadays, these limitations are more or less removed but still the CMS
method is very popular. Subcontractors deliver their reduced FE dynamic
models to the prime contractor who will combine (synthesise) all these
models to the spacecraft dynamic FE model to perform the dynamic analy-
sis on the complete spacecraft. The same applies to the coupled dynamic
load analysis (CDLA) when the reduced FE model of the complete space-
craft is placed on top of the launch vehicle. In general, the dynamic FE
modal of the launch vehicle is a reduced dynamic FE model too.

Dynamic properties of substructures may be defined by experiment and
may be coupled to other dynamic FE models of other substructures.
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Hence, there are many reasons to apply the CMS method.

For dynamic analyses the components may be obtained by reducing the
number of dofs by applying the MDM. The physical dofs {x} are, in gen-
eral, depicted on a small number of kept modes (eigenvectors), the modal
base,

{x} = [®]{n}, (18.1)

e [®] the modal base consists of the kept mode
e {n} the generalised or principal coordinates.

The number of generalised coordinates {n} is, in general, much less
than the number of physical dofs {x}.

In this chapter an introduction to the CMS method will be given and a
number of methods will be discussed. We will assume undamped compo-
nents, however, in a later stage during the synthesis the modal damping
ratios can be introduced.

18.2 The Unified CMS Method

There are many CMS techniques described in the literature. The modal
description of the components strongly depends on the boundary conditions
applied by building the reduced FE model of the component. The discus-
sion of the CMS method will be focused on:

e Components with fixed-interface dofs {x,}

e Components with free interfaces
e Components with loaded interfaces

The component or substructure can be considered as a linear mdof

dynamic system. The equations of motion of a damped component are writ-
ten as:

[Mn‘ Mib:| Xi + |iCii Cin|] xi + K K { i }={ F; } (18.2)
My; Myy| | 1, Coi Cha| | % Ky Kpp| L Xp F,

However, for the time being we will consider only undamped components,
hence
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i:Mii Mib:| Xi + |iKii Kib:l{ X } - { F; } (18.3)
M, My,|| x, Ky Kpp| L x,, F,
with:

e {x;} theinternal dofs
e {x,} the boundary or external dofs

e [M] the mass matrix
e [K] the stiffness matrix
e [F} the force vector

18.2.1 Modal Truncation

A general unified component mode synthesis method has been developed
[Curnier 81, Lacoste 83]. We start with equations of motion of two uncou-
pled components (substructures) A and B, based on (18.3).

MYy M 0 0 it
MAbi MAbb + mAbb 0 0 J'rAb
0 0 Ml My i
0 0 MPpi MPpp+ mPs) | 55,

K K 0 0 iy F
N K Ko+ K 0 0 i _FY , (18.4)
0 0 KBi,' KBib xBi FB,'

0 0 K’pi KBbb+kab Ly FBb
with
e m"y the added mass to component A from adjacent component B
o m’ss the added mass to component B from adjacent component A
o K" the added stiffness to component A from adjacent component B

o i’ the added stiffness to component B from adjacent component A

The added matrices at the boundaries of the components can be obtained
with, for example, the static condensation method [Guyan 68]. The bound-
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ary dofs {x,} of the adjacent component are considered the {x,} dofs
during the reduction process. We distinguish components with:

e fixed-interface dofs: m™s» — e and k*»» — 0
e free interfaces m™», — 0 and Koy =0
e loaded interfaces 0 < m”s, <o and 0 < k*», < o . If the interface is deter-

minate kA;,b= 0.

The reduced-stiffness matrix [k,,] and reduced-mass matrix [m,,] of the

adjacent component can be obtained using the static condensation method
(GR) as proposed by [Guyan 68]. The GR reduced-mass matrices are

[mpy] = [M3,]+ [KGIKST IMOIIKD K] (18.5)
[mpy] = [Mjy] + [KGIIKA] IMAIIKET (KD, (18.6)
and the reduced-stiffness matrices are.
(k5] = [Ko,J-[KIIKS] [KG] (18.7)
k] = [Kp,I-[KGIIKR K] (18.8)

When the interface between two components is determinate the reduced-

stiffness matrices are [kib] = [kf,,] = [0].

18.2.2 General Synthesis of Two Components

If both components A and B the physical dofs are depicted on a reduced
number of modes [®,] of component A and [®;] of component B we may

write

af

5| |2 0 o]
A A LA A
) Xp \ — q)bi (I)bb 0 0 nb L (189)
% 0 0 @y, @yf|
X 0 0 @) || n’

The eigenvectors of a 3-dofs system are
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Xp1 -0.5774 —0.7071 0.4082
x; (= |-0.5774 0.0000 —0.8165| -
Xy -0.5774 0.7071 0.4082
The modal matrix
o o x; 0.0000 —0.5774 —0.8165
! ;” =1 X, (= |=0.7071 —0.5774 0.4082 | -
Ppi P Xy, 0.7071 -0.5774 0.4082

Synthesis is the assembly of the uncoupled equations in (18.9) of the two
components (substructures) A and B. The substructures will be coupled via
their common interfaces

{x}} = {xp}. (18.10)
This means
{x)} = [@)1{n}} +[®),1{n5} = [@51{N7} + (@), 1{ns} = {xb}. (18.11)
This will result in the following equation
[@),){n}} - [®p,1{n}} = [@p1{n’}-[®)){n}} (18.12)

If we introduce new generalised co-ordinates
1
(M} = SUP5HMG}+ @31y} (18.13)

Adding and subtracting (18.12) and the (18.13) will make {n’,:} and {nf}
explicit

I

3} = 10,171 + 3100001 - 510000 (18.14)

7y = 0] ("1 -g1efanfy 51000 mly). asas)

We obtain the following relation
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N I 0 0 |
" 1,4 71 4 A1 1 a1 _pB nf.’
A [Pyl [P;] [Dy] i[q)bb] (D] !
4“’; =2 1 1 N8t (18.16)
1 - o1 -
LA E L ARCARNCARECARCH W
B i
U 0 0 I |

and finally the relation between the physical dofs and the reduced set of
generalised dofs becomes

2] et el 0 o 1_1 0_1 0_1 .

A S AR AIC AR CANC AT I

& 0o o of of %[@ﬁb]_lmﬁi] CIAN -%[q)fb]_l[qfi] nb,,

A B AT | R 0 o
(18.17)

18.2.3 General Example

This general example is based on the work of [Curnier 81] and is an appli-
cation of the three modal synthesis variants to 3 dofs launcher—payload
model. This model is illustrated in Fig. 18.1.

xA x,A=x,B xB
—>
K k
m PV
Launcher payload
xiA XA xB xiB
K k
m M
u W\ e
A M
m
Launcher bb mByy, payload

Fig. 18.1. 3-dofs launcher—payload model

The undamped equations of motion of the two uncoupled components are
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4 ] A _
MO0OO "; K-K0 o™ 0
OMOO|) % [ |-KK OO|Jx|_J]o (18.18)
0 0mOj| B 0 0 k -k B 0
Xb Xp
000m| 4 0 0 -k k B 0
L *i ] i
The coupled equations of motion become
A A
M 0 Off % K -K O0f|% 0
0 M+m Oy xo (T|-KK+k—kly x;, (=10 [ (18.19)
0 0 m|| .8 0 -k &k B 0
Xi i
. K _k, K+k _ 2Kk o N
with § = utimt dem and P = Um the eigenvalues of the dynamic sys
tem described with (18.19) are
_ . _
1 2
2{S—\s“-4P
{A} = Z{S S } , (18.20)
l{S+ s2-4p}
and the associated modal matrix [P]
K
b1 K-2M
[®]l =11 0 1 . (18.21)
1k _k
K k-2m

The equations of motion after the interface treatment mj),, m;,, kj, and

B
ky, become
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M o o oll&| [k -k o o« 0
0M+m), 0 0(5;,2 +-K1<+k’,j,, 0 oﬁx’; o
0 0 m+m,oO|| 5 0 0 k+ky k|| xp 0
0
0 0 0 ml| ;2 0 0k Kkl
(18.22)

The following options can be taken into account
o free-interface mj, = my, = Ky, = ko, = 0

. A B A B

. A 1 1 B 1.1
¢ loaded-interface m,, = m+kim_k =2m, my, = M+KI—(MI_(K = 2M,

k
A 1 B 1
kbb = k—k%k = O and kbb = K_KI—(K =0
The characteristic equations are
K-AM -K
¢ launcher 4 | =0
-K  K-MM +my,)
k-2 —k
e payload " g |=0
-k K—-MAm+my,)
With reference to (18.9) we find
: TEVE T T N N T
A A A A A
X Lpii @, 0 0 { n; -M n;
A A A A o= 10 0 A
1% | _ [P0 Py 0 0 P M +my,, I |
B B -Bl| B - B
Xy 0 0 @y Dyl | M 0 01B=—"5(| M
B B .B|| B m+myl| B
) [0 0 @y Dy M | i 0 01 . n;

(18.23)
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Table 18.1. Characteristics general example

377

Rigid-body natural Elastic natural Interface Added mass
frequency frequency
() (%)
s s
Ao A m/,:b =2m
0 K2M+ml,
My m;:b
0 2K free 0
M
0 £(2M+ Zm) loaded 2m
M\ M+2m
0 K fixed o
M
Payload
0 B
mm+ mfb
0 2k free 0
m
0 k (2m +2 M) loaded M
m\ m+2M
0 k fixed oo
m
Equation (18.17) now becomes
e I 0 o | 10 0]
i 14,71 4 A1 1 .4 -1 B T]A o . B T]A
A - . - . i - i
) Ny _ z[q)bb] [q)bl] [q)bb] Z[q)bb] [(Dbt] nAB _ 2 1 2 nAB
B 1 .B.-l 4 B.-1 1 B -1 B b a Bl
i E[(Dbb] [@p;] [@p] _E[q)bb] [D@;] nl? 2 1 7 nl}
B i i
M § | 0 0 I ] 100 1]
(18.24)

Equation (18.17) becomes
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. _a. B
[ 4 I-31 3
)Ci E A
a N;
X > 13
V1= ni® = [THIT}. (18.25)
xb g 1 E B
2 2 n;
XB B !
i o _Pb
= 2 1 1 2_.

The synthesised mass matrix [My,] = [T]T[M,O,][T] becomes

2

U—MM+%{M+m)M+am M;“m
[Msyn]= M+ om 2(M +m) m+ M , (18.26)
2
M;ﬂ m+BM (l—B)m+%(M+m)

and the synthesised stiffness matrix [K,,] = [T]T[Kml][T] becomes

syn

(1-0)’k0 0
[Kynl= 0o 0 0 |- (18.27)
0 0(1-B)%

The evaluation of the parameters is shown in Table 18.2.

Table 18.2. Evaluation parameters

Parameters Free Loaded Fixed
o= -M -M
B= -m -m

m+ mgb -1 m+3M 0

The following properties are assumed:
e Launcher: K = 75 N/m, M = 200 kg
e Payload: k = 10 N/m, m = 5 kg

The following eigenvalues for the two synthesised components (launcher,
payload) can be calculated
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e free: 0.0000, 0.7273, 2.0623
e loaded: 0.0000, 0.7273, 2.0623
e fixed: 0.0000, 0.7273, 2.0623

which corresponds with the theoretical solution.

18.3 Special CMS Methods

In this section three special CMS methods will be presented:

e The Craig—Bampton fixed-interface method.

e The free-interface method with improved accuracy

e The general CMS method, which combines the fixed- and free-interface
CMS methods.

18.3.1 Craig-Bampton Fixed-Interface Method

The fixed-interface method (Craig-Bampton method) is discussed in sev-
eral publications [Craig 68, Craig 77, Craig 81, Craig 00, Gordon 99] and is
one of the favourite methods used in the CMS.

We denote the external or boundary degrees of freedom with the index b
and the internal degrees of freedom with the index i. The matrix equations
(18.3) may be partitioned as follows

|:Mii Mibj| Xi " t:Kii Kibjl{ Xi }: { F; }

My Myl | %, Kpi Kpp| L x, F,

In [Craig 68] it is proposed to depict the displacement vector {x(¢)} on a
basis of static or constraint modes [®,] with {x,} = [I] and elastic mode

shapes [®,] with fixed external degrees of freedom [x,} = {0} and the
eigenvalue problem [[K;;] - (A,)[M;;]11[®;;] = [0]. We can express {x} as

{x} = [®{x,} +[®]{n;} = [D,, <I>,~]{ *b } (18.28)

N;
The static modes can be obtained, assuming zero inertia effects,
{F;} = {0}, and successively prescribe a unit displacement for the bound-
ary degrees of freedom, thus {x,} = [/].So we may write (18.3) as follows
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MR 2
Ky Kp| L %, R,

From the first equation of (18.29) we find for {x;}

[K;1{x;} + [K;pl[x,] = O, (18.30)
hence
{x} = -[K,J[K,,]{x,3, (18.31)
and therefore
[®,] = -[K,1[K,][1] = —[K,]"'[K,,]. (18.32)

The static transformation now becomes
{x} = { i } = {‘I’w}{xh} = [®,1{x,}. (18.33)
Xy 1

Assuming fixed external degrees of freedom {x,} = {0} and also assum-

ing harmonic motions x(t) = X(co)e""’" the eigenvalue problem can be
stated as

(K] - 0 IM,D{®;} = {0}. (18.34)

The internal degrees of freedom {x;} will be projected on the set of orthog-
onal mode shapes (modal matrix) [®@,,], thus

{x} = [®;1{n;}. (18.35)

The modal transformation becomes
{x} = { % } = F’i{m} = [®,]{n;}. (18.36)

Xy 0

The Craig—Bampton (CB) transformation matrix is (18.28)

(@, D] = _[Kii]—l[Kib] Q; |
I 0

The Craig—Bampton (CB) transformation matrix is (18.28)
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u%q%qﬂ?}ﬂwmy

with
e [®,] the static or constraint modes

[®@,] the modal matrix

{x,} the external or boundary degrees of freedom

{n;} the generalised coordinates. In general, the number of generalised

coordinates i is much less than the total number of degrees of free-
domn =b+i,i«n.

The CB transformation (18.28) will be substituted into (18.3) presuming
equal potential and kinetic energies, hence

[P IMIPIXY + [P1 [KIPHXY = [P1{F(n)}. (18.37)

On further elaboration we find
~ . ~ T
Moo My |} X6 | Kob Ky, { b } = !:(Dib ‘DE| { F; }, (18.38)
My, (m)|| n Ky (kUM I 0 F,

[1l~/1bb] the Guyan reduced-mass matrix (b-set)

with

[I}bb] the Guyan reduced-stiffness matrix (b-set)

e (m) the diagonal matrix of generalised masses, (m; = dJiT[M][CIDi]

(kp the diagonal matrix of generalised stiffnesses,

(k) = (@K@ = (A)(my = () {m))
[K;p)= [®;,] K (@] + [K,J[@,] = (- [K;,) (K1 (K] + [K,,D)[@;] = [0]
(K] = K, = [0]

Thus (18.38) becomes

~ . ~ T
Moo My; )Xo\ |Kbb O { Xb } = {(Dib qﬂ { F; } (18.39)
M, (m) T]; 0 (kp|t M 1 0 F,

Finally
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[Mcpl{X} +[Kcgl{X} = [W1{F} = {F¢p}, (18.40)
with
e [Mcg] the CB reduced-mass matrix
e [Kcg]l the CB reduced-stiffness matrix

The CB matrices are b+i,b +i sized matrices.
If we look at the reduced-mass matrix [M.gz] and the reduced-stiffness

matrix [Kqg] in more detail we observe only a mass coupling between the
internal dofs {x;} and the external dofs {x,} in the reduced-mass matrix
[Mcg] via the sub- matrices [M,;] and [M,,] consisting of the modal par-
ticipation factors. We now write (18.4) as follows

) = (18.41)
0 Meg)| X" ) |0 Keo|| X°| | Fes
[Mtot]{QIOI} +[Ktot]{Qtot} = {Ftot} ’ (18'42)
or
[ A ] .. [ A 1
m)* My 0 0t eyt 0 0 0| || g,
o .
My Moo 0 0] [ |0 K 0 0] x*|_] Fess
0 0 (m)® M| AP, 0 0 (k)® o[ n% Fes,i
~ .B ~ B
0 o M omMplEe] [0 0 o0 Kl Flcs.b
(18.43)

For coupling the substructures A and B we assume equal displacement and

acceleration of the external dofs x*, = x®» and )'cAb = Sc'Bb. Therefore, the
total displacement vector can be written as

A
n 100 -
_JMN | joor 5 _
{Qut= = n’; = [L1{Qreq} (18.44)
n% 010

B
001 xAb=xb

B
X b
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The transformation matrix [L] also applies to the acceleration. Using the
equations of Lagrange or assuming equal potential and kinetic energies
(18.44) can be incorporated into (18.43).

LY [M o JIL1{ Orea} + [L] TK oL Qrea} = [L1{Fo} = {Fy} (18.45)

A . A .
my* 0 omg, |l [kt o 0 i
B B . B .
0 (my) My, TlBi 1o (K 0 'ﬂBi
~ A ~ B LA ~A ~B CA
M’zi Mf,. Mbb + Mbb| | X b 0 0 Kpp+Kpp| *¥?b
Fiep,i
- FPos.s ) (18.46)

B
FACB,b'l'F CB,b

The reduced-mass matrices [1;4217] , [A}fb] , the reduced_stiffness matrices
[I}:,-b] and [I}fb] , related to the common boundary dofs {J'cAb} = {)FBb} and

{xAb} = {bi} are added. The generalised masses (m,-)A and (m,-)B are
coupled via the modal participation factors (matrices [M,;] and [M,,]) to

. ."A "B . .
the reduced- mass matrix [Mp»+ Mps]. The generalised stiffnesses are not

coupled with the reduced-stiffness matrix [K:b + be] .

The Craig—-Bampton method is widely applied in the cases when the
component dynamic properties are described by their mass and stiffness
matrices.

A linear free-free dynamic system consists of 19 dofs; 1 to 19. The
lumped masses at dof 1 and dof 19 are m; = m;y = 0.5 kg The masses

lumped to the other dofs,2to 18, are m, = m; = .... = my; = myg = 1 kg.
The 18 springs between the dofs 1 to 19 are equal,
ki, = kyy = ... = ky7y3 = kyg;9 = 10000 N/m. The free-free dynamic sys-

tem is illustrated in Fig. 18.2.

...---M\AM
kip kp3 ki71g k

1819

Fig. 18.2. Free dynamic system with 19 dofs
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A linear free-free substructure consists of 7 dofs; 1 to 7. The lumped masses
at dof 1 and dof 7 are m; = m, = 0.5 kg The other masses lumped to the

other dofs, 2 to 6, are m, = ... = mg = 1 kg. The 6 springs between the
dofs 1 to 19 are equal, k,, = k,; = ... = kg; = 10000 N/m. The substruc-
ture is shown in Fig. 18.3.

kiz ky3 k3q kys kse kg7

Fig. 18.3. Free-Free substructure with 7 dofs

Three substructures will build up the total structure as illustrated in
Fig. 18.2. The results of the analyses are shown in Table 18.3.

Table 18.3. Results of CMS natural-frequency calculations

Model A Model B
# Complete Model 1 mode per substructure 2 modes per
(Hz) (7 dofs) substructure (10 dofs)
(Hz) (Hz)
1 0.0000 0.0000 0.0000
2 2.7743 2.7771 (0.1%) 2.7752 (0.0%)
3 5.5274 5.5803 (1.5%) 5.5316 (0.1%)
4 8.2385 8.9437 (9.5%) 8.2535 (0.2%)
5 10.8868 11.9825 (10.0%) 10.9253 (0.4%)
6 13.4524 15.5038 13.6279
7 15.9155 17.3217 17.3217
8 18.2575 19.7890
9 20.4606 22.5478
10 22.5079 23.7726

18.3.2 Free-Interface Method

The principle of CMS with the free-interface method (unconstrained
boundaries) is discussed by Graig, [Craig 76, Craig 77, Craig 00]. The basic
free-free. undamped.equations.of. motion are taken from (18.3), simply writ-
ten as
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[M]{x} +[K]l{x} = {F}. (18.47)
The eigenvalue problem is
{[K]- o [M1}{6;} = {0}. (18.48)

The n physical dofs {x} are projected on the linear independent set of
eigenvectors, the so-called modal matrix

[®] = [, Oy, -, (18.49)
hence
{x} = [®}{n}. (18.50)

The modal matrix [®] is orthogonal with respect to the mass matrix [M],
thus

(@] [M][®] = (m), (18.51)

and orthogonal with respect to the stiffness matrix [K]

[@1[K][®) = (mw). (18.52)
Equation (18.3) can be transformed (coordinate transformation) into a set of
decoupled n sdof equations of the generalised coordinates {n}
mfk+meon, = {0, HF} k = 1,2, .0, (18.53)
with
¢ m, the generalised or modal mass

. mkmz the generalised or modal stiffness

In the frequency domain with
o {x(n} = {X(w)}"
o {n(n} = {M(w)}*
o {F()} = {F()}"”

The solution of I1,(®) is

{0,} {F(0)}

IN(w) = .
¢ mk((y)i - 0)2)

(18.54)

The solution for the vector of generalised coordinates {I1(®)} in the fre-
quency domain becomes
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{I(w)} = <—)[‘D] {F(o0)}. (18.55)

mk(co - 0)

The physical displacement vector {X(w)} is obtained from

{X{w}} = [P{II(0)} = [‘1>](———>[<D] {F(w)}. (18.56)
mk(o)k m
The modal matrix [®] may be partitioned in the kept modes and the deleted
modes:
[P] = [®, D,]. (18.57)

Reconstructing the flexibility matrix [G], with ® — 0

[G] = [® (o) @] +[®,1(m,02) [®,1" = [G]+[G,], (18.58)
with
® [G,] the residual flexibility matrix, [G,] = [G] —[Qk](mkwi)_l[CDk]T
e [G] = [K]_l the flexibility matrix (the inverse of the stiffness matrix

[K] is only allowed if the structure is constrained such
that rigid body motions are eliminated)

If the rigid-body modes are eliminated we can express {X(®)}, assum-

. 2 2
ing for the modes k>m, @, » ®

{X(@} =Y {04} (18.59)

k=1

2 Z {0}

ml-071)

({%}{F( )}] 1 ({¢k}{F( )})
m,

Equation can be transformed back in the time domain, such that

{x(0} = [QH{n ()} +[GH{F (1)} (18.60)

and this is done in combination with (18.53).

If a substructure has rigid-body modes, the flexibility matrix [G] does
not exist, however, an alternative formulation can be derived. We write the
displacement vector {x} as follows

{x} = [®,]{n,} +[®]{n.}, (18.61)
with
e [®,] the rigid-body modes (w, = 0)
e [®@,] the elastic modes of a free-free component (®, #0)
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e {n,} generalised coordinates associated with the rigid body motions
e {n,} generalised coordinates associated with the elastic motions

The modal matrices [®,] and [®,] are orthonormal with respect to the
mass matrix [M], thus

(@, [MI[@,] = (m), [®])[MI[®,] = {(m), [®,] [M][®,] = [0],(18.62)
and orthogonal with respect to the stiffness matrix [K]

[@,1"(K1[®,] = [0], [@,][KI[®,] = (m,), [®1[KI[®,] = [0].(18.63)
Equation (18.47) can be written

[MI[®,1{7,} + [MI[®,1{N.} + [K][®,1{n,} + [KI[®,]{n,} = {F}. (18.64)
Taking into account that [K][®,] = [0] (18.64) becomes

[M][®,]{n.} + [K][®,]{n.} = {F}-[MI[®,]{n}. (18.65)
Using (18.53), and referring to (18.62), it can be easily proved that

{n.} = <m,>"[d>,]T{F}. (18.66)

Equation (18.65) now becomes
MI[@,1{n.} + [K][®,{n,} = {F}—[M][®,](m,)"1[®,]T{F} = [Al{F} (18.67)

(m){Tie} + (m,o2{n,} = [@1TAN{F} = [®,1'{F}, (18.68)
with
e [A] the inertia-relief filter matrix with the following properties:
[®,17[A1{F} = [0] and [®,"[A] = [®,]". The first equation
means that [A]{F} is an equilibrium force system.

Because the force system [A]{F} is in equilibrium the free-free sub-
structure may be constrained in an arbitrarily point “B”, which will take out
the rigid-body motions. This has no influence on the elastic deformation in

the substructure. The elastic deformation, with respect to “B”,is {x; ,} and
can be calculated with

{xp..} = [Gg JIA{F}. (18.69)
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Fig. 18.4. Constrained substructure in point B

The stiffness matrix [K] can be partitioned, giving

(K] = {K“ Kw} (18.70)

KBe KBB

The dofs in point B are constrained, so the rows and columns in the matrix
[K] with respect to dofs associated with point B are removed. The stiffness
matrix [K,,] is regular. To calculate the complete vector of deformation

(inclusive the dofs associated with point B) we can define the constrained
flexibility matrix [G, ,] as follows

-1
(Gy,.] = [Kee 0]. (18.71)
00

The total displacement of the free-free substructure can be written as
{xa} = {xp .} +[®]1{6,}. (18.72)

We force the displacement {x,,} to be mass orthogonal with the rigid-body
modes [®,], thus

[@,1"[M]{xy} = {0}. (18.73)

This will result in
18,3 = ~(my™'[®,1 [MI{xy,,}. (18.74)

Thus, the free-free displacement {x,,,} becomes

D} = (- 19,1(m) " (0,1 IMD x5 .} = [A1'1Gy JIANF} = [GH{F}
_ (18.75)
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The matrix [G] in (18.75) is called the elastic flexibility matrix in inertia-
relief format. (18.75) must be used when the substructure is unconstrained
(free-free). (18.61) can now be written as

{x} = [®,{n,}+ [P, J{n,  } + {xa1} > (18.76)
or the displacement vector {x} becomes
{x} = [®{n,}+[P, N, } + [GH{F} = [®]{n,} +[GI{F}, (18.77)
with

e [®,] the kept elastic modes (inclusive rigid-body modes)

Equation (18.77) will be partitioned in internal dofs {x;} and external or
boundary dofs {x,}.

B
x, D, Gpi Gpy| L F

and the associated undamped equations of motion expressed in the general-
ised coordinates {n,} (including the rigid-body modes, 0),% =0)

T
. D, . F.
<mk>{m}+<mk<o,f>{nk} = [(Dk]T{F} = [ ""} i1 (18.79)
ko] | Fp

Coupling of Two Substructures A and B
To couple the two substructures A and B we must force continuity with

respect to the external or boundary displacement {x’;} and {x/,:} , hence
{xp} = {x}, (18.80)

and at the boundaries the external forces of substructure A {F“; } and sub-

structure B {Ff } are at equilibrium, hence

{Fy}+{F,} = {0}. (18.81)

If we substitute the second part of (18.79) into (18.80) the following equa-
tion is found

@) (N} + (G E T + 1[Gy J{Fyk = B, {n;}+ (G 1{F, }+(Gy,l{Fy},(18.82)
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With the introduction of equilibrated forces at the boundaries in (18.81),
(18.82) can be rewritten as

{FyHIGy,] +[Gpyl} = @ y{ng} - @ {ng} +[Gyl{F, } - [G,1{F}. (18.83)
or
{F)} = {IGH, +1GE,1Y (@F P} -0 ,(nd} + [GEHFE} - [GL1{F'}) (18.84)
and
(FE} = —{[G,) +1GE, 1Y (@F (P - {ni} + (GEHFP} - [GAHFID(18.85)

Substitution of the last two equations (18.84) and (18.85) into (18.79) in
respectively substructures A and B, with [K‘;‘f] = {[G’,:b] + [Gf,,] }_1 , we get

4 T
«»} P
(I)k, b FbA

(my (e + (ml 0y (i} =

A T
= | Pk o Fi . (18.86)
O, | |[KP1A®E ,1n; } - (@) )N} + (G HFIY - [Gy{Fi D)

and

T
. o || F?
(mBy{hiey + (mb Py (mPy = { )’;'} l i ]

ch,b Ff
B T FB
- q’:i L o (18.87)
@ 4| |IKG D@ 1M} - [P 1N} + [God{F } - (G l{FI D)

Rewriting (18.86) and (18.87) we obtain

ndy 0 } it
)

B .B
0 (my Nk

ny

RIGRICARTS AN R TR ln’:]

[0f VIO 1 (K + (0,1 (KN ,]

ol LElUMN Zyl_i.lbl
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A T _AB. B
[{@2 a6 ot b]T] (@} ] [K)21[Gp) P
B T _AB, A ;
(@ 1 [Kp, 1(Gy,] [[@ﬁi]T-[¢ﬁb]T[Gﬁi] [cpf,,ﬂ i
(18.88)

In the final synthesised dynamic system (substructures A, B, etc.) only
the generalised coordinates are left, while the interface dofs have been can-
celled out. The coupling of the substructures is done via the stiffness
matrix. The mass matrix is a diagonal matrix with the generalised masses
on the main diagonal.

18.3.3 General-Purpose CMS Method

The general-purpose CMS method has been addressed by [Herting 79, UAI
93]. Both constrained and unconstrained substructures are covered by this
CMS method. We assume undamped substructures. The undamped equa-
tions of motion for a substructure or component can be written using, (18.3)

(M1{x} +[K1{x} = {F}.
In the previous section we have derived the solution for the physical dis-
placement vector in the frequency domain, (18.56)

[(X{o}} = [¢]<—21—2)>[¢1T{F(w>}.

my(®; -~ ®
Three groups of responses can be considered:
1. The rigid-body modes; o),f =0, [®] = [®y] and m;, = m,,
k=12 ..6
2. The kept elastic modes, the natural frequencies which are in the fre-
quency range of interest; cof =0(0’), [®] = [®,] and m,,
k=6,7,..,m

3. The deleted elastic modes: mi » oaz, [®] = [®,] and m,,

d=m+1, ...

Equation (18.56) can be written

[X(@)} = [[d>0]<—‘—2>[<1>01’+[cbk1<———2‘—2—)>[d>k]T]{F(m)}

~my® m (0 ~ ©



392 18 Component Mode Synthesis

I:+[<Dd] <;2)>[<DAT]{F(OJ)} . (18.89)

my(Qy

The constant acceleration, when w — 0, becomes
. . . 1
Xe = ul)lmO{X((D)} = —mz{X((D)} = [Dy] (;)[%]T{F(t)} , (18.90)
- 0

and the static displacement vector (w — 0), premultiplied by the stiffness
matrix [K], is given by
. 1
(Kl{x} = lim [KI{X(@)} = [K)([0(—=[0"J(F()

m @,

HEN(12 (=10, }F)}. (18.91)

my0,
If (18.90) and (18.91) are substituted into (18.3), with ® — 0, we can
1

express [K]([cbd]( 2)[cl)d]T){F(t)} as follows
my0y

([rb,,]<—15>[d>d]’){m)} = {F(n}~ [M][%](mi())[%lr{nz)}

myWy
—[K]([Qk] (— @) + ...){F(t)} : (18.92)
Equation (18.89) is transferred in the time domain giving:
{x(} = [Pel{no(O)} + [P I{M(D} + [D,] <—1—5)[c1>d]T{F(r)} . (18.93)

my0y

If the result of (18.92) is substituted into (18.89) and if (18.93) is premulti-
plied by the stiffness matrix [K] we get
[KKx(D} = [KI[PyH{no(D)} + [KI[P (D)} +{F (1)}

~[M][D,] <mio>[q>0f{p(t)} _[KI®, ) ;‘—m@ (@17 {F(1)}. (18.94)
kVk

Making use of [K][®,] = {0}, (18.94) can be written as
[KH{x(0)} = [KI[@ J({M()} = {Mgu(D)}) = [M][d)o](mio)[‘Do]T{F(t)} +{F(n},

(18.95)
or
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[KHx(1)} = [KI[@ {8, (1)} - [MI[Dy]{dp(1)} + {F(D)}, (18.96)

with

o {5, =MD} -{ngu(n}) the normal mode generalised coordi-
nates.

o {dy(n} = (,—rll-) [(I)O]T{ F(n)} the inertia-relief coordinates (n, < 6),

0

[UAI 93], and have units of acceler-
ation.

We return to (18.3)

I:Mii Mib:l Xi + I:Kii Kib:|{ Xi }_ { F; }
M, M,|| %, Ky Kpp| L %, F,
With use of (18.96) we can express [K;;1{x;} as follows
(K {x;} = {F;} + (KD, 1+ K1 [P ,1{8,(D})
~([M (D@ 1+ M 1[®g ,D{8o(1)} ~ [K;p{x,}, (18.97)

and furthermore,
{x;} = [K”]'I{F,.}+([d)k’,.]—[G,.b][<Dk’b]){8k(t)}

—[K,-,-]_l([M,-i][G,-b] + M, D@y ,1{8o(1)} +[G;,H{x,}, (18.98)
with
* [G,] = —[Kii]—l[Kib]

* [Gipll®y, ] = [Py,;]

The displacement vector {x}, using (18.98), can be written as

i 8,
{x}=1{% t=1¥] 5, 1 = [YI{©O}, (18.99)
xb xb
with
{x} = {x}+[K,J{F,}. (18.100)

Thus we can write for the transformation matrix [¥]
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= "[Kii]—l([Mii][Gib]+[Mib])[q’o,b] ([P, 1-1G1[Py D) G| . (18.101
[¥] (18.101)
0 0 1

Some remarks can be made;

e When the number of modes is zero and the inertia-relief effects are
ignored, the transformation matrix [W¥] in (18.101) is the same as the
Guyan reduction of matrix condensation transformation.

e Modes provide dynamic motion relative to the static deformation.

¢ Rigid-body motion and redundant constraint information are contained

in the [G,,] transformation
e Inertia-relief  deformation  shapes are contained in the

—[Ki,-]_l([M,-,-][Gib] +[M;,])[®, ,] matrix.
e The sum of rigid-body dofs {5,} and elastic generalised dofs {9,}
shall be less than or equal to the number of internal dofs {x;}.

The general undamped equations of motion are

[M]{x} +[KI{x} = {F()} .
If we apply the transformation (18.99) the following undamped equation
of motion are obtained

(1 [MIP1{0} + [PT KI[PI{0} = [¥1{F(1)}, (18.102)
or
[Myo {0} + [Kgp {0} = {Fy(1)} (18.103)

The data recovery of the physical dofs, displacement {x}, velocities {x}

and acceleration {x}, can be obtained as follows. The displacements {x}
become

] % .
(x}= { X; } _ ] X +{ xi,(;m: } = [¥] §, (+ [[Kii] l{Fi}J, (18.104)

Xp Xp 0
Xb

and the velocities {x}
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: N 8o
{x}=4 M= ML= ¥H s, 1 (18.105)
Xb )éb .
Xp
and the accelerations {x} are
. 8o
{x}= x ={ % | =[y] 8 (- (18.106)
Xp Xp .
Xp

We may improve the solution of the displacements {x} by using the mode
acceleration method [MAM]

Da}= | T = {Gib}{xm[[Kfil‘%{F,-}-[M,-bJ{x';,}—[Mii]{fc',-}).
1

Xp 0
(18.107)

The damping effects are ignored here.

A free-free dynamic system consists of 20 discrete masses, each m = 1
kg, connected with springs, each k = 10000 N/m. The total mass matrix
and stiffness matrix are

10..00 1-1...00
01..00 -12..00
Ml = . .. .. .. .. [KI=100000 .. .|
00..10 00 ..2-1
00..0°1 00 ..-11

In this example only the natural frequencies of the complete and reduced
models, using the general-purpose CMS method, will be given. The results
of the reduction process are shown in Table 18.4. The number of elastic
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modes taken into account are reflected in the accuracy of the natural fre-
quencies. The accuracy of the modes is not considered in this example.

Table 18.4. Results of reduction process, natural frequencies

Reduced model Reduced model
Natural frequency natural frequency natural frequency
# (Hz) (Hz) (Hz)

nb?=2, nr’=1, ne°=5 nb=2, nr=1, ne=5
Complete model

1 0.0000 0.0000 0.0000

2 2.4974 2.4974 2.4974

3 4.9795 4.9795 4.9795

4 7.4308 8.8043 7.4308

5 9.8363 11.7091 9.8363

6 12.1812 12.1812
7 14.4510 16.8204
8 16.6316 19.0208
9 18.7098

10 20.6726

a. number of boundary dofs, constarint modes
b. number of rigid-body modes
c. number of elastic modes

18.4 Problems

18.4.1 Problem 1

A linear free-free substructure consists of 7 dofs; 1 to 7. The lumped
masses at dof 1 and dof 7is m; = m; = 0.5 kg The other masses lumped
to the other dofs, 2 to 6, are m, = ... = mz = 1 kg. The 6 springs between
the dofs 1 to 19 are equal, k;, = ky; = ... = kg; = 10000 N/m. The sub-

structure is shown in Fig. 18.3.

Couple two substructures with each other, substructure 1 node 7 with node
1 of 'substructure 2; and calculate the natural frequencies and associated
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modes. There are no other boundary conditions (free-free structure). Use
the following CMS methods:

1. Craig—-Bampton method
2. Craig—Chang method
3. Herting method

18.4.2 Problem 2

A structure may be identified with two components or substructures; com-
ponent 1 and component 2, as illustrated in Fig. 18.5.

Component 1

Connections % % % %
k k k k k k
T

Component 2

Fig. 18.5. Component 1 and component 2

Calculate the modal characteristics (natural frequencies, mode shapes and
effective masses). All masses have a mass m = 1 kg and all springs have a
spring stiffness k = 100000 N/m

Calculate all elastic modes per component (except for the Herting method).

]

Fig. 18.6. Synthesised components

Complete system
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e Component 1
1.Craig-Bampton method (using constraint modes)

2.Herting method
e Component 2

1.Craig—Bampton method (using constraint modes)
2.Craig—Bampton method (free-free)

3.Herting method

¢ Synthesis

1.Component 1 - method 1, component 2 method 1
2.Component 1 - method 1, component 2 method 2
3.Component 1 - method 1, component 2 method 3
4.Component 1 - method 2, component 2 method 3




19 Load Transformation
Matrices

19.1 Introduction

The mathematical reduced (condensed) dynamic model consists of the
reduced- mass and reduced-stiffness matrices. The damping matrix is, in
general, not delivered in a reduced form because the damping characteris-
tics will be introduced later in the dynamic response analyses.

Because the reduced dynamic model only consists of reduced matrices
during the dynamic response analyses no direct information about physical
responses; e.g. forces, stresses, can be made available. The reduced
dynamic model will only produce response characteristics of physical (e.g.
I/F dofs) and generalised degrees of freedom; displacements, velocities and
accelerations.

To be able to produce responses, stresses and forces, in selected struc-
tural elements during the dynamic response analyses using (coupled)
reduced dynamic models the so-called load transformation matrix (LTM)
can be used. The LTM defines a relation between forces and stresses in cer-
tain structural elements and the degrees of freedom of the reduced dynamic
model. In general the transformation matrix is called the output transforma-
tion matrix (OTM) [Chung 98, Fransen 02]. Besides LTMs displacement
transformation matrices (DTM), acceleration transformation matrices
(ATM) can also be defined [Bray 91], however, in this chapter only LTMs
will be discussed. The creation of DTMs and ATMs is quite the same as the
generation of LTMs.

In the following sections two methods of obtaining LTMs will be dis-
cussed. Both methods are based upon the mode displacement method
(MDM) and the mode acceleration method (MAM) [Craig 81]. The meth-
ods described are:

e The LTMs of a reduced dynamic model with boundary conditions, such

thatrigid-body motions are prevented, thus {x;} = {0},
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e The LTMs of a free-free reduced dynamic model. In general, six rigid-
body motions will exist.

19.2 Reduced Model with Boundary Conditions

The reduced dynamic model has been created from a reference finite ele-
ment model mass and stiffness matrix for which the boundary conditions
prevent at least the six motions as a rigid-body. The stiffness matrix is not
singular in that case.

Using the MAM the displacement vector {x} can be written as:

{x} = (K1 - (@A) (@) {F(O)} + [®]{n,}, (19.1)
with:
o [K] the stiffness matrix
e [®.]{n,} the MDM solution
e [D] the modal matrix of the kept modes
e {n,} the vector of generalised coordinates

o (Ap = (wi) the diagonal matrix of eigenvalues (natural frequencies)
o [F(1)} the external force vector

The flexibility matrix [G] = [K ]_1 exists and can be expressed as:
[G] = [@)(0) '[@] = [@J(A)  [®]" + [®g1 (A '@,  (19.2)

[G] = [®1N'[®]" = [G]+[G,]. (19.3)
Finally the displacement vector becomes:

{x} = [ymaml + [P I{N,}, (19.4)
with:
e [G,] the residual flexibility matrix
e [G,] the residual flexibility matrix based upon the kept modes
e [®] the modal matrix of all modes
[®,] the modal matrix of the deleted modes
[Wpam] = [G,1{F()} the residual attachment modes, in fact the
MAM correction on the MDM
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In [Chung 98] an efficient manner to create the residual attachment
modes has been suggested. The displacement vector {x} becomes using
[Chung 98]:

{x} = [Ymaml{F(O} +[@1{n.}. (19.5)
with

[¥mam] = [G,I[T], (19.6)
and with:

¢ [Wmam] the ‘Chung”residual attachment modes
o [T] the square load distribution matrix, with unit loads in the col-
umns at locations where the loads {F(z)} are applied.

The internal generalised forces {c} ; forces and stresses, in certain struc-

tural elements are proportional to the displacement vector {x} :

{o} = [Dsl{x} , (19.7)
with:
e [D,] the output transformation matrix, also denoted with [OTM]

Rewriting (19.7) we obtain the following expression for {c}:
{0} = [Dellymaml{F(1)} + [D,lI@,1{n,}, (19.8)
or
{o} = [LTM {F()} + [LTM, I{n,} . (19.9)
Quit often, (19.9) is written as
{omam} = [LTM{F()} + {Oypm} - (19.10)

The undamped equations of motion of the 3 mass—spring dynamic sys-
tem (Fig. 19.1) are:

100|| x 1,5 -1 -05|| *1 100|[| 1
mO10]{ x, (*k| -1 3 1|y x (= -mul010[y 1
001 ; -0,5 -1 25]| x, 001f| 1
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The displacement vector {x} is with respect to the base (relative displace-
ments). The right side of the equations of motion form the inertia loads due

to the base acceleration u .

1 m
X
05k % K %
F(t) I 2 om
| k
| t t
1 1 ~ ——

]

Fig.19.1. 3 mass—spring dynamic system (constrained)

The eigenvalue problem of the dynamic system is defined as:

100 |15 -1-05|| % 0
Moo+l -1 3 -1l x (=70
001 |-05-125])| x, 0

The first eigenvalue A, and the associated mode shape {¢,} are:

0.7511

M = 055395 and (0,3 = —={ 04886 | with {0,} [M1{0,} = [1] = 1.
m Jm
0.4440

The LTMs will be based upon the first natural frequency and associated
mode shape. Thus the reduced model will only consist of the first mode
shape.

The forces in the springs can be calculated with:

{c} = [Ds{x},
with a stress matrix [D,] defined as follows:
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[Dy] = k

The flexibility matrix [G] is:

1.1818 0.5455 0.4545
[G] = [KI"' = 70,5455 0.6364 0.3636 -
0.4545 0.3636 0.6364
The flexibility matrix[G,], which is associated with the first natural fre-

quency A, and mode shape {¢,}, is:
M 1 1.0185 0.6625 0.6021

i = 1|0.6625 0.4310 0.3917| -
0.6021 0.3917 0.3559

(G =

The residual flexibility matrix [G,] is

{ 0.1634 -0.1170 -0.1475
[G,] = [G]-[G,] = %|~0-1170 0.2054 -0.0280) -

—0.1475 -0.0280 0.2804

The modified residual attachment mode matrix [\;/MA u] becomes:

[wmaml = [GI[T] = [G,1l1] = [G,].
The load transformation matrices were defined as:
{o} = [LTMK{P(5)} + [LTMI{n,(1)}.
This gives:

0.2804 -0.3225 -0.1195
. 0.0305 0.2334 -0.3084
[LTM;] = [Dgllymam] = |-0.1475 -0.0280 0.2804
0.1555 -0.0445 -0.2140
|-0.1170 0.2054 -0.0280]

-

and




404 19 Load Transformation Matrices

0.2625
0.0446
[LTM, ] = [Dsll9,] = § 0.4440

0.1535

0.4886

19.3 Reduced Free-Free Dynamic Model

The calculation of the stresses and forces that are related to the degrees of
freedom at the unconstrained boundary {x;} and the generalised coordinates
{n,} may be inaccurate when the contribution of the high natural fre-

quency modes is neglected. With the aid of the MAM the stresses and
forces in the structural elements become more accurate.
The equations of motion for a component or a substructure are:

sl sl Tl ol
M M| 5 | KKy L F;
The force vector {F;} represents the interface forces between components,

and
e {x;} the internal degrees of freedom

* {x;} the external degrees of freedom (in general at the boundary)

The internal degrees of freedom {x;} may be written as [Klein 88]:

{x} = -[K,]" [M,.,. M,J MK ) (19.12)

Xj

For a Craig—Bampton model [Craig 68], [Craig 81]

xi L0 0 T , (19.13)
0 I]| %




19.3 Reduced Free-Free Dynamic Model 405

(0,1 = -[K; ]'I[K‘.] the constrained modes
* ([Kyl-MIM;1){9,} = {0} the eigenvalues problem of the internal

degrees of freedom
® {n,} the generalised coordinates (modal amplitude coefficients)

The displacement vector {x:} can be written as:

{5} = K [m, MJ]|:1’ 11} M 4 (K, 1{x) ¢ (19.14)

Xj

The complete displacement vector {x} becomes:

x.
. J
X 1

. o, 0] M -
(x} = {xi} - |IKaT [M M,]{p IJ] " ,{—[K,.i] l[Kij]}{xj}.(19.15)

0

The stresses or forces in particular structural elements of the component
can be expressed as:

{0} = [Dol{x} = [Dgy; D J3 ™ 1 (19.16)
X

or

-1 ¢ ¢i' 11 -1
{6} = [Dm, Dw} (K] [Mii Mij;l [; Ijl ..p +[_[Kii] [Kij]]{xj}?,(19.l7)

j

0

or

{6} = [LMT,] My + [LMT,1{x;}, (19.18)
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with:

[LMT,] = [D,, DGJ[—[K,.,-] M, MJF)P ’JD (19.19)

I

and

[LMT,] = [, D] {‘[K”]"I[K"f]} : (19.20)
1

The load transformation matrix [LMT,] can be defined by setting

{x;} = {0} and n” = [I], and the load transformation matrix [LMT,]
Xj

by setting {x;} = {I} and{ ¥ } = {0}.

Xj

For {x;} = {0} the external degrees of freedom have been fixed and if

M L= {0} no inertia forces are active.
b
J

The delivery of a reduced dynamic model is frequently accompanied by
the load transformation matrices. During the coupled dynamic loads analy-
sis the stresses and forces may be calculated in selected structural elements.

The undamped equations of motion of the ‘free-free” 4 mass—spring
dynamic system are (shown in Fig. 19.2):

1000]| % 15 -1-05 0] *i 0
ml0100]) %2 | [ -1 3 1) m | _fo
00101,;3 05-1 25 ~1|| x 0
0001ff 0 -1 -1 2]| &, F,

with:
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Xy
® {x;} =1{ x,  the internal degrees of freedom
X3
* X =1x the external degree of freedom
* F, the interface force

Fig. 19.2. 4 mass—spring dynamic system (free-free)

The partitioned mass matrices become:

100 ; 0
[M;;]1 = m|o 10|, [M;]=mand [M;] =[M;]"=mq o ,
001 0
and the partitioned stiffness matrices:
1.5 -1 =05 . 0
Kl =kl -1 3 0-1> [K”] = 2k and [K,'j] = [Kﬂ] =k -1
-05-1 25 -1

The following eigenvalue problem for the {x;} degrees of freedom must

now be solved. This eigenvalue problem of the internal degrees of freedom
is defined as:

([K,'i] - X[Mii]){xi} = {0} .
The eigenvalue A, and the associated mode shape {¢,} are:
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0.7511
A _05539 ,and {¢,} = {¢,} = ﬁl 0.4886 (- With
0.4440

{0} IM1{,} = [1].
The LTMs will be based upon the first natural frequency and associated
mode shape. Thus the reduced model will only consist of the first mode
shape.

The constrained mode [¢,;] is:

1
(0,1 = _[Kii]_l[Kij] =31
1
The forces in the springs can be calculated with:
{o} = [Dsl{x},
with a stress matrix [D,] defined as follows:

1 -1 0 O 1 -1 0 0
01 -1 0 01 -1 0
[Dsl=kio 0o 1 -1|,[Dgl=k[0 0 1 and [ch] =ky -1 ¢-
050 -050 0.5 0 -0.5 0
01 0 -1 0 1 0] -1 |

The load transformation matrices were defined as:

{o} = [LT™M, T {4+ [LTM,){x},
Xj

and are as follows:
[-0.4739 —0.6364

1 ~0.0804 ~0.0909
[LT™,] = [Do;][—[Ku]" {[M M) [ ’ ’} H = k|-0.8016 —1.4545

01 _02772 —0.3636
-0.8821 —1.5455|

-

and
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[LT™™,] = [D,, D,] [—K;;IK,,] = |

S O O O O

[LTM,] = {0} means that the structure has a determinate interface.

19.4 Continuous Dynamic Systems

The LTMs are generally applied to discrete dynamic systems (finite ele-
ment model), however, for continuous dynamic systems the same proce-
dures can be used. The continuous dynamic system must be discretised
using assumed modes within the framework of the Rayleigh—Ritz method.
The real discretization in generalised coordinates can be done with the aid
of the Lagrange equations. Once the continuous dynamic system has been
discretised and transformed into a set of generalised coordinates, associated
with the assumed mode approach, the same procedure may be followed as
described in previous sections.

The procedure to generate the LTMs for continuous dynamic systems
will be illustrated with two examples, a massless ‘tlamped” beam, with a
discrete mass at the tip with constrained (Fig. 19.3) and free-free boundary
conditions (Fig. 19.4). The bending moment and shear force at the
"clamped" positions are to be calculated.

|

Clamped [ G M
_ ( Jl

w(lL) = 0 . bt o g —)

w'(L) = 0 A

Fig. 19.3. Clamped beam
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Free-free
u
w(L) = u }L EI M
w(x)l
w(L) =0 L X

Fig. 19.4. Free-free beam

The displacement function w(x) due to the unit load F = 1 N at the tip of
the clamped beam is [Prescott 24] (Fig. 19.5):

Elw(x) = éx3—%xL2+%L3. (19.21)
F=1N
Clamped E l
w(L) = 0 . foll "

L

w(L) =0

Fig. 19.5. Clamped beam

The displacement w(x, t) is expressed as an assumed mode ¢(x) multi-
plied by a generalised coordinate n(z):

w(x, t) = ®(x)Nn(z) (19.22)
with:
_(xy X
o(x) = (Z) —3(L)+ 2 (19.23)
The potential (strain) energy of the clamped beam is (Fig. 19.4):

L L
=1 g _ 1o of o 112EI 2
= 2_[OEI(w )"dx = SEIM jo(tb () dx = 2 (19.24)
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T = %M¢2(0)f]2 = %4M1'12. (19.25)

The virtual work applied by the external force is:
8W = —MLudw(0) = —2MLiidn = Qdn. (19.26)

With the Lagrange equations an equivalent mass—spring system is estab-
lished:

3730 on " 9n = 0 (19.27)
This results in the equation of motion of the equivalent mass—spring sys-
tem:

+>=n = —2. (19.28)

The bending moment My,.,4 and the shear force D may be calculated:

Myena(x) = —EIW (x,1) and D(x) = —EIw' (x,1). (19.29)
Hence
{ Miens } - —6—?{ * }n(t) (19.30)
D L1
{ M;nd } = [LTMI{F(1)} + [LTM, ]{n,(1)}. (19.31)

The load transformation matrix [LTM;] = [0] and

[LTM,] = _6—]351{ x } (19.32)
L1
with:
mL 2

This example (Fig. 19.4) is the free-free beam with x; = n and x; = u
and

O(x)N(2) (19.33)
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U= —J' EI(w Ydx = SEIn J (@ (0))2dx = 1251712 (19.34)
The kinetic energy of the discrete mass is:
%U -M{¢(0)n + u} = —M(211 + u) (19.35)

With the Lagrange equations an equivalent mass—spring system is estab-
lished:

9T aT aU _ dT JT JdU
atan 811 ﬁ datau—ﬁ+$ R. (19.36)

The reaction force R is due to the base excitation.
The equations of motions of the 2x2 dynamic system are:

o | [rzerg
SRR TINE {“}:{0}. (19.37)
214 4 u F
0 0
Applying the MAM, the solution of the generalised coordinate n can be
written as:

*

=T2ﬁ[4 2] n +0u, (19.38)
u

with

-
D(x) L 1

The load transformation matrices were defined as:

{o} = [LTM,{ " {4+ [LTM,]{x;}
Xj

[LTM,] = M[Z; ’j (19.39)
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[LTM,] = { g } (19.40)

19.5 Problems

19.5.1 Problem 1

A clamped beam with a bending stiffness EI, a length L and a mass per
unit of length m has been connected at the tip with a simple mass—spring
system with mass M and stiffness k (Fig. 19.6).

The displacement w(x, r) is expressed as an assumed mode ¢(x) multiplied
by a generalised coordinate M(7):  w(x,t) = ®(x)n,(r)with:

o(x) = ({)3 - 3(13‘:) +2.

. |

Clamped
w(L) = 0 . W(x)l X
w(L) = 0 g

Fig. 19.6. Beam mass-spring system
Perform the following steps:

o Set up the equations of motion for clamped beam and mass—spring sys-

tem with a base excitation u .
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o Set up the ‘free-free” load transformation matrices

{o} = [LTM,] nl’ +[LTM,]{x;} for the bending moment M(L), the
Xj
shear force D(L) and the force in the spring with spring stiffness &
expressedin u, n and u.
¢ What is the physical meaning of the mass matrices [M,;] = [Mj,.]T and
what are they called?

Answers: The undamped equations of motion:

. 12EI
0.94286mL 0 1.5mL|| T Ve +4k -2k O[| m, 0
0 M 0 n, [t =\ F
2 2k ko] ™
1.5mL 0 mL - u R
u 0 00

The submatrices:

12EI
22X 4k 2k
[Ki,'] = L3 s [Kij] = { 8 }

2k k
(M, = |0-94286mL 0| 1y g { 1.5mL }
0o M 0
The force matrix:
i 7
SEL 00
L
Dy =
Dol = | SEL
L
| 2% k0

19.5.2 Problem 2

A bending beam with a length L, a bending stiffness EI, and a mass per
unit length m , is simply supported at both ends. Both supports are enforced

with the acceleration « . The following questions are to be answered:
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¢ Derive the equation of motion expressed in a relative deflection w(x,t).

¢ Derive the analytical solutions for the bending eigenfunctions ¢(x).

e Derive the equations of motion using the generalised coordinates n(¢).
The physical deflection can be expressed as: w(x, t) = ¢(x)n(¢).

e Derive the ATM in the middle of the supported beam at x = lL.

2
e Derive the LTM in the middle of the beam at x = %L ,with M = -EIw'
and D = -EIw"
19.5.3 Problem 3

The dynamic system is illustrated in Fig. 19.2 with the degrees of freedom
x; = x, = 0. Aload F is applied in degree of freedom x,, however, in the

opposite direction. The stress matrix [D,] is defined as follows:

-1 0

1 -1

[Dsl =kjo 1
0 -0,5
L1 0]

Calculate [LTM,] and [LTM,].

19.5.4 Problem 4

The dynamic system is illustrated in Fig. 19.2. The degrees of freedom are

{x} = { 1 } and ~'{xi} = { %2 } The stress matrix [Dy] is defined as

Xy X3
follows
1 -1 0 O
01 -1 0
[Dsl=kl0o 0 1 -1
050 -050
(0 1 0 -1

Calculate [LTM,] and [LTM,].
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